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Figure: Non-Intrusive Loads Monitoring: interpret
type of each individual loads from the aggregated
loads [https://bitbucket.org/aicip/non-intrusive-
load-monitoring]

“Non-intrusive” means only the
aggregated power consumption of
multiple appliances in a household is
allowed to measure;

Consumers concern the states of each
individual loads, like fridges, lighting;

These states monitoring are beneficial to
detect abnormal conditions and optimize
the energy deployment.
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Motivations and Contributions

Motivations and Contributions

Motivations

– If the continuous power observations X
(m)
t of the mth individual loads can be

modeled by Gaussian distributions,
– the “on and off” states Z

(m)
t (“on and off”) can be equivalent to be the

hidden state, and these states are temporal related,
– Then each individual load can be modeled as a HMM with Gaussian

observations.
– Thus the aggregated power X̄t, including multiple individual loads, can be

modeled by the factorial hidden Markov Model (FHMM), to decode the states
of individual loads.

Main Contributions

– Train HMMs with Gaussian observations to represent each individual loads
through the Expectation-Maximization (EM) algorithm;

– Construct the FHMM to characterize the aggregated loads;
– The power and the states of each individual loads can be estimated by

FHMM decoding using the aggregated loads.
– The parameter sensitivity of the HMM model is also studied.
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Problem Formulation
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Figure: FHMM

Given the aggregated loads X̄t of multiple individual,

X̄t = ΣM
m=1X

(m)
t (1)

where the aggregated observation X̄t is determined by the combination of M

possible states Z
(m)
t ,m = 1, · · · ,M of M individual appliances.

Goal: Predict the states (“on” and “off”) Z
(m)
t of each individual loads

based on FHMM.
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HMM training

Model individual loads with HMM
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Figure: HMM with Gaussian Observations

zn ∈ {1, · · · ,K} denotes the K
possilbe switch states at the nth time of
the appliance;

xn is continuous observations,
representing the measured power at the
nth time, xn ∼ N (µ,Σ).

The parameters for this HMM are
θ = {A ∈ RK×K , π ∈ RK , φ}, φ =
{Σ ∈ R,µ ∈ Rn},

– A is the transition matrix
– π is the prior distribution
– φ include the mean µ and covariance

Σ of the Gaussian distribution.

where
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HMM training

Train HMM with EM algorithm (1)

Following the EM algorithm, the lower bound Q(θ, θold) can be maximized

Q(θ,old ) = ΣZp(Z|X, θold) log(p(X,Z|θ)) (2)

= ΣK
k=1γ(z1k) log πk︸ ︷︷ ︸

(1)

+ ΣN
n=2ΣK

j,k=1ξ(zn−1,j , zn,k) logAjk︸ ︷︷ ︸
(2)

(3)

+ ΣN
n=1ΣK

k=1γ(znk) log(p(xn|zn, φ))︸ ︷︷ ︸
(3)

(4)

– where γ(znk) = α(zn)β(zn)
– ξ(zn−1,j , zn,k) = α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)
– α(zn)β(zn) can be computed recursively.

The parameters θ = {A, π, φ}, φ = {Σ, µ} can be obtained by maximizing
the (1)∼(3) with probability constraints respectively.
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HMM training

Train HMM with EM algorithm (2)
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HMM training

FHMM of the Aggregated Loads
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Figure: Factorial Hidden Markov Chain with
Gaussian observations

FHMM utilizes M HMM chains to
model the observations xi, i = 1, · · · , n;

The parameters size of FHMM

θagg = {πagg ∈ RKN

, , Aagg ∈
RKN×KN

, µagg ∈ RKN

,Σagg ∈ RK}
becomes large if K increases;

The parameters of FHMM are defined as
the combination of the parameters of
HMMs θi = {Ai, πi, φi}, i = 1, · · · ,M .

πagg = π1 ⊗ π2⊗, · · · ,⊗πM (5)

Aagg = A1 ⊗A2⊗, · · · ,⊗AM (6)

µagg = µ1 × µ2×, · · · ,×µM (7)

where ⊗ denotes the Kronecker product,
× denotes the Descartes product.
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FHMM Decoding

Decoding the Optimal States with Viterbi Algorithm

Given the aggregated observations x and the parameters
θagg = {πagg, , Aagg, µagg,Σagg} , the decoding problem is to acquire the
best sequence of the hidden variables z by maximizing the conditional
probability p(Z|X)

z∗1 , · · · , z∗N = arg max
z1,··· ,zN

p(z1, · · · , zN |x1, · · · , xN ) (8)

= arg max
z1,··· ,zN

p(z1, · · · , zN , x1, · · · , xN ) (9)

= arg max
z1,··· ,zN

p(z1)ΠN
t=2p(zt|zt−1)ΠN

t=1p(xt|zt) (10)

The best sequence can be recursively obtained by Viterbi algorithm.

These z∗1 , · · · , z∗N indicate the states of individual loads.
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Numerical Experiments

Introduction of Datasets
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Figure: The typical individual and aggregated power
consumption

The public dataset of
Reference Engergy
Disaggregation Datasets
(REDD) [Kolter et al., 2011]
validate the method.

There are six households with
10∼20 various appliances.

The power consumption of each
individual loads and the
aggregated measurements are
also given;

The main four type of
individual loads are applied:
lighting, refrigerator,
dishwasher, and microwave.
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Numerical Experiments

HMM with Different Number of Hidden States
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(a) The power of microwave
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(b) The power of refridgerator

Figure: Modeling individual loads by HMM with different
number of states

The states of “on and off” of
individual loads can be
captured by the HMM model;

For each hidden node
zn ∈ {1, · · · ,K}, the number
of states K will influence the
accuracy of modeling the power
consumption;

The figures demonstrate that a
larger K can reduce the
approximation errors, but more
parameters need to learn;

As we mainly concern with the
“on and off” states, the HMM
with K=2 is applied.
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Numerical Experiments

State Estimation of the Aggregated Loads with FHMM
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Figure: The real and estimated power of lighting
appliance

The FHMM of four chains with 16
states is constructed;

The various states can be correctly
captured by the FHMM;

There are some difference between the
power consumption estimated by the
FHMM and the real one, as only 2
states are used for each loads;

A larger number K of hidden states
can reduce the difference.
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Numerical Experiments

Disaggregating Different Loads with FHMM (1)
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(a) Comparison of the individual and the
disaggregated power of refrigerator
appliance
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(b) Comparison of the individual and the
disaggregated power of lighting appliance

“The individual load” is
calculated by the HMM from the
individual observations;

“The disaggregated load” is
decomposed from the aggregated
loads by FHMM;

The figures show that the FHMM is
able to correctly estimate the
switch on and off states of
individual appliances.
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Numerical Experiments

Disaggregating Different Loads with FHMM (2)
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(a) Comparison of the individual and the
disaggregated power of refrigerator
appliance
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(b) Comparison of the individual and the
disaggregated power of lighting appliance

Disaggregating different types of
individual loads is challenging, if the
switch on and off states of various
loads are overlapped;

For example, Both the lighting and
refridgerator switch their states
during 1500 to 1600 seconds,

thus the FHMM mistakes the
states of these two appliances
during this period of time, but this
issue can be mitigated if a higher
sampling rate and more states can
be applied.
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Percentages of disaggregating loads with FHMM
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Figure: Comparison of the percentages of true individual
loads and the disaggregated loads

The total power is
decomposed into four types
with the FHMM, and the
percentages of each type are
shown in the pie diagram;

For lighting and microwave,
the difference between the true
percentages and the predicted
ones is less than 5%;

For dishwasher and refrigerator,
the difference is larger, since
these appliances have more
transient states which are
generally ignored by the 2-state
HMM.
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Conclusions and Discussion

The on and off states of individual loads can be estimated by a HMM with
Gaussian observations;

The FHMM constructed with the parameters learned from individual loads is
able to estimate the states of the aggregated loads;

A larger K, the number of hidden states, can increase the estimation
accuracy but costs more parameters;

The states of individual loads can be predicted by the FHMM using the
aggregated loads;

More number of hidden states, higher sampling rate and more training
datasets can improve the performance of the FHMM.
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Thank you for your attention!
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