





# Real-time Event Identification through Lowdimensional Subspace Characterization of High-dimensional Synchrophasor Data

#### Wenting Li, Meng Wang, Joe H. Chow 2017 CURENT Industry Conference November 14, 2017 Knoxville, Tennessee



Northeastern



# **Motivations**

- Fast event identification is beneficial to improve system security and prevent cascading failures;
- Model-based methods depend on the accuracy of system parameter estimation, and data-driven methods attract more attentions;
- The limitations of existing data driven methods include:
  - Identify single type of events<sup>[1]</sup>;
  - lack of physical interpretations<sup>[2-4]</sup>;
  - complicated training models<sup>[2]</sup>;
  - with a large dictionary size and expensive computations<sup>[2-4]</sup>;
  - most are offline algorithms<sup>[3-4]</sup>.

## Features of our identification method

- Characterizing events through low-dimensional subspaces, which are related to the eigenvalues of power system state matrix;
- These subspaces of data matrix in 1 second can be efficiently computed by singular value decomposition (SVD);
- Our dictionary has a small size;
- Can be implemented in real time.



## **Problem Formulation**

• Given the PMU measurements data  $M^{m \times T}$ , its low dimensional approximation can be obtained:



$$M^{m \times T} = U_k \Sigma_k V_k \qquad k \ll T$$

 $U_k$ : Span the column subspace;  $V_k$ : Span the row subspace;

 $\Sigma_k$ : The k largest singular values of  $M^{m \times T}$ .

#### Main Idea:

- Online track  $U_k$  to detect the abnormal event, and then localize by
- $U_k$ ,  $\Sigma_k$  and identify the type of event by  $V_k$ .

# **Event Identification through Subspace**

 Identify an event by comparing the row subspace of the real-time spatial-temporal PMU data blocks with a dictionary of subspaces obtained from recorded PMU data with known event types.



Fig. 1: Dictionary construction from historical datasets and real-time data identification through subspace comparison

## **Event characterization through subspace**

• Physically interpretation of subspace  $span(V_k)$  through linear system with an impulse input:

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_0 \\ y_k &= Cx_k \end{aligned} \tag{1}$$

• In a short period of time, input  $u_0$  can be ignored;

$$M_{m \times T} = \begin{bmatrix} y_0 & y_1 & \dots & y_T \end{bmatrix} \approx U_k \Sigma_k V_k$$
$$\approx \sum_{i=1}^k l_i^T x_0 C r_i \begin{bmatrix} \lambda_i & \lambda_i^2 & \dots & \lambda_i^t \end{bmatrix}$$
(2)

- Where  $\lambda_i$ ,  $l_i$  are the *i*<sup>th</sup> eigenvalue and left eigenvectors of matrix A;
- $r_i$  is the *i*<sup>th</sup>right eigenvectors of matrix A;

• Let 
$$\beta_k^{\dagger} = [1, \lambda_k, \lambda_k^2, ..., \lambda_k^{\dagger}];$$
  
• Span $(V_k)$ = span $(\beta_k^{\dagger})$ 

Different type of events produces different eigenvalues, producing **different subspaces**.



# **Subspace Similarity Metric**

• Subspace angle<sup>[7]</sup>

$$\theta(S_k, S_l) = \arccos \sqrt{\frac{\left\| B_k^T, B_l \right\|_F^2}{\min(k, l)}}$$

• Where  $B_k$  spans the subspace  $S_k$  with dimensionality k, while  $B_l$  spans the subspace  $S_l$  with dimensionality l.

- A small subspace angle  $\theta(S_k, S_l)$  indicates a similar event type;
- The minimum angle  $\theta^*$  between the online data and all the dictionary atoms  $V_k^{i,j}$  points out the type of event;



## **Detection and Location**

• Detection indicator:

$$\varepsilon = \left\| y_t - U_k U_k^{\dagger} y_t \right\|_2$$

- Where  $y_t$  is the online data at time t,  $U_k U_k^{\dagger} y_t$  is estimated by column subspace  $U_k$ ;
- Once the threshold  $\varepsilon_0$  is exceeded, it indicates the occurrence of event;
- Location indicator for the *i*<sup>th</sup>bus:

 $\eta_i = \| (U_k \Sigma_k)_{i.} \|_2$ 

- Where  $(U_k \Sigma_k)_{i}$  is the  $i^{th}$  row of matrix  $(U_k \Sigma_k)$ ;
- Locate the most influenced buses by choosing the top k buses with the largest  $\eta_i$ , i=1,2...k.



### **The Framework of Our Approach**





## **Numerical Results**



Fig.2 Topology graph of 16-machine 68 bus power system

- We test it in the 16machine 68 bus power system through Power System Toolbox (PST);
- Sample frequency is 30 times / second;
  - 380 testing cases: line trip, load change, three phase short circuit and generator trip events at various locations and on different initial conditions.

# **Dictionary Constructed offline**

Table I Dictionary atoms for four types of events

| Dictionary Type | The label of dictionary atoms                                                    |
|-----------------|----------------------------------------------------------------------------------|
| Line Trip       | 1-2, 4-14, 5-8, 12-11, 15-16, 30-32, 32-33, 33-34, 35-45, 42-41, 44-45           |
| Short Circuit   | 2,3,8,12, 16, 25, 28, 31, 32, 33, 34, 35, 36, 37, 39, 43, 44, 50, 53, 56, 59, 62 |
| Load Change     | 15, 16, 24, 32, 41, 42, 47, 48                                                   |
| Generator Trip  | 1, 2, 10, 11, 13, 14, 15                                                         |

- Step 1: offline construct dictionary atoms
  - Line trip : Labeled by the line between two buses;
  - Load change : Labeled by the bus number;
  - **Short circuit** : Labeled by the bus number;
  - Generator trip: Labeled by the number of the tripped generator;
  - In total: 42 dictionary atoms, each of which has the dimensionality of 30 by r<sup>1</sup><sub>max</sub>, are selected based on 190 training datasets.

## **Identification Results**

Table II Minimum subspace angles between a test case and the dictionary

| Dictionary              | Load Change  | Line Trip    | Short Circuit | Generator Trip |
|-------------------------|--------------|--------------|---------------|----------------|
| Туре                    |              |              |               |                |
| Events                  |              |              |               |                |
| Load Change at bus 17   | <b>2.6</b> ° | 10.8°        | 9.5°          | 9.8°           |
| Line 7-8 is tripped     | 12.2°        | <b>0.7</b> ° | 12.0°         | 3.0°           |
| Short circuit at bus 36 | 13.5°        | 11.6°        | <b>4.8</b> °  | 11.4°          |
| Generator 5 is tripped  | 12.8°        | 2.2°         | 12.5°         | <b>1.9</b> °   |

- Step 2: Online test four types of events
  - We utilized 1 second of data;
  - The subspace angles in Table II are the minimum one between online data and dictionary atoms of each type;
  - The bolder one, denoting the minimum one, points out the type of event.



## **Identification and Location Performance**

Table III Identification results of 380 testing datasets with different pre-conditions<sup>1</sup>

| Type of event  | IAR % | AR   |  |
|----------------|-------|------|--|
| Line Trip      | 100   | 1.7  |  |
| Short Circuit  | 93.3  | 1.25 |  |
| Load Change    | 100   | 1.5  |  |
| Generator Trip | 93.8  | 2.4  |  |

- Identification Accuracy Rate (IAR): the ratio of the number of accurately identified events to the total number of events;
- Average Rank (**AR**): the average rank of the correct bus location in descending order according to  $\eta_i = \|(U_k \Sigma_k)_{i.}\|_2$ . The correct bus denotes the bus that is closest to the location of the event.

[1] denotes the different operating conditions before the events and are measured by  $\bar{\eta}_a^b = \frac{1}{L} \sum_{j=1}^{L} \frac{|P_j^b - P_j^a|}{|P_j^a|}$ , where  $P_j^a$  denotes the active power on condition a and *L* is the total number of lines.

# **Results of ISO-New England**



- 22 training dataset of the three types (a)-(c) are employed to construct a dictionary of 6 atoms;
- 10 testing datasets are successfully identified;
- Notice that exponential filters<sup>1</sup>, are utilized to reduce noise before computing the subspaces in the training and testing datasets.



### **Identification Results**

Table VI Minimum subspace angles between a test case and the dictionary atoms of three types of events in recorded PMU data

| Dictionary Type | Load Change   | Short Circuit | Line Trip     |
|-----------------|---------------|---------------|---------------|
| Events          |               |               |               |
| Load Change 1   | <b>4.08</b> ° | 16.91°        | 18.29°        |
| Load Change 2   | <b>3.12</b> ° | 20.81°        | 14.39°        |
| Fault 1         | 24.95°        | <b>6.33</b> ° | 23.86°        |
| Fault 2         | 8.93°         | <b>3.73</b> ° | 15.76°        |
| Line Trip 1     | 7.25°         | 5.85°         | <b>3.93</b> ° |
| Line Trip 2     | 11.20°        | 30.21°        | <b>4.27</b> ° |

• The minimum subspace angle of each row indicates the type of event.



## Conclusions

- Our algorithm based on subspace can identify different types of events;
- It is efficient and only requires data in a short period of time;
- Can be implemented online algorithm and its requirements of storage is small;
- Both the simulated data and recorded PMU data validate the effectiveness;
- Further research will focus on identification of successive multiple events.

## Reference

- 1. Jie Wu, Jinjun Xiong, and Yiyu Shi. Efficient location identification of multiple line outages with limited pmus in smart grids. Power Systems, IEEE Transactions on, 30(4):1659–1668, 2015.
- Huaiguang Jiang, Jun Jason Zhang, Wenzhong Gao, and Ziping Wu. Fault detection, identification, and location in smart grid based on data-driven computational methods. Smart Grid, IEEE Transactions on, 5(6):2947–2956, 2014.
- 3. Wei Wang, Li He, Penn Markham, Hairong Qi, Yilu Liu, Qing Charles Cao, and Leon M Tolbert. Multiple event detection and recognition through sparse unmixing for high-resolution situational awareness in power grid. IEEE Transactions on Smart Grid, 5(4):1654–1664, 2014.
- 4. Yang Song, Wei Wang, Zhifei Zhang, Hairong Qi, and Yilu Liu. Multiple event analysis for largescale power systems through cluster-based sparse coding. In 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), pages 301–306. IEEE, 2015.
- 5. Huaiguang Jiang, Jun Jason Zhang, and David W Gao. Fault localization in smart grid using wavelet analysis and unsupervised learning. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pages 386–390. IEEE, 2012.
- 6. Mahdi Soltanolkotabi, Ehsan Elhamifar, Emmanuel J Candes, et al. Robust subspace clustering. The Annals of Statistics, 42(2):669–699, 2014.
- 7. R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice. OTexts, 2014.



#### **Acknowledgements**



This work was supported in part by the ERC Program of NSF and DoE under the supplement to NSF Award EEC-1041877 and the CURENT Industry Partnership Program, and in part by NSF Grant 1508875.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

