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Motivations

• Fast event identification is beneficial to improve system

security and prevent cascading failures;

• Model-based methods depend on the accuracy of system

parameter estimation, and data-driven methods attract

more attentions;

• The limitations of existing data driven methods include:
• Identify single type of events[1];

• lack of physical interpretations[2-4];

• complicated training models[2];

• with a large dictionary size and expensive computations[2-4];

• most are offline algorithms[3-4].

2



Features of our identification method

• Characterizing events through low-dimensional 

subspaces, which are related to the eigenvalues of power 

system state matrix;

• These subspaces of  data matrix in 1 second can be 

efficiently computed by singular value decomposition 

(SVD);

• Our dictionary has a small size;

• Can be implemented in real time.
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Problem Formulation

• Given the PMU measurements data 𝑀𝑚×𝑇, its low dimensional 

approximation can be obtained: 
𝑀𝑚×𝑇 = 𝑈𝑘Σ𝑘𝑉𝑘 𝑘 ≪ 𝑇

𝑈𝑘: Span the column subspace;

𝑉𝑘: Span the row subspace;

Σ𝑘: The  𝑘 largest  singular values of 𝑀𝑚×𝑇.

• Goal: 

Identify different types of events with online data in a short period of 

time.
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Main Idea: 

• Online track 𝑈𝑘 to detect the abnormal event, and then localize by 

𝑈𝑘 , Σ𝑘 and identify the type of event by 𝑉𝑘. 3



Event Identification through Subspace

• Identify an event by comparing the row subspace of the real-time 

spatial-temporal PMU data blocks with a dictionary of subspaces 

obtained from recorded PMU data with known event types.
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Fig. 1: Dictionary construction from historical datasets and real-time data 

identification through subspace comparison



Event characterization through subspace

• Physically interpretation of subspace span(𝑉𝑘) through linear 

system with an impulse input: 

 
𝑥𝑘+1= 𝐴𝑥𝑘 + 𝐵𝑢0
𝑦𝑘 = 𝐶𝑥𝑘

(1)

• In a short period of time, input  𝑢0 can be ignored;
𝑀𝑚×𝑇 = 𝑦0 𝑦1 … 𝑦𝑇 ≈ 𝑈𝑘Σ𝑘𝑉𝑘

≈  𝑖=1
𝑘 𝑙𝑖

𝑇𝑥0 𝐶𝑟𝑖 𝜆𝑖 𝜆𝑖
2 … 𝜆𝑖

𝑡 (2)

• Where 𝜆𝑖, 𝑙𝑖 are the 𝑖𝑡ℎeigenvalue and left eigenvectors of matrix 𝐴;

• 𝑟𝑖 is the 𝑖𝑡ℎright eigenvectors of matrix 𝐴; 

• Let  𝛽†
𝑘 = 1, 𝜆𝑘 , 𝜆𝑘

2 , … , 𝜆𝑘
†

;

• Span(𝑉𝑘)=  span(𝛽†
𝑘).
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Different type of events 

produces different 

eigenvalues, producing 

different subspaces.            



Subspace Similarity Metric

• Subspace angle[7]

𝜃(𝑆𝑘 , 𝑆𝑙 ) = 𝑎𝑟𝑐𝑐𝑜𝑠
𝐵𝑘

𝑇 , 𝐵𝑙 𝐹
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min(𝑘, 𝑙)

• Where 𝐵𝑘 spans the subspace 𝑆𝑘 with dimensionality 𝑘, while 𝐵𝑙

spans the subspace 𝑆𝑙 with dimensionality 𝑙.

• A small subspace angle 𝜃 𝑆𝑘 , 𝑆𝑙 indicates a similar event type;

• The minimum angle 𝜃 ∗ between the online data and all the

dictionary atoms 𝑉𝑘
𝑖,𝑗

points out the type of event;
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Detection and Location

• Detection indicator:

𝜀 = 𝑦𝑡 − 𝑈𝑘𝑈𝑘
†𝑦𝑡 2

• Where 𝑦𝑡 is the online data at time 𝑡, 𝑈𝑘𝑈𝑘
†𝑦𝑡 is estimated by column 

subspace 𝑈𝑘;

• Once the threshold 𝜀0 is exceeded, it indicates the occurrence of 

event;

• Location indicator for the 𝑖𝑡ℎbus:
𝜂𝑖 = (𝑈𝑘Σ𝑘)𝑖. 2

• Where (𝑈𝑘Σ𝑘)𝑖. is the 𝑖𝑡ℎ row of matrix (𝑈𝑘Σ𝑘);

• Locate the most influenced buses by choosing the top k buses with 

the largest 𝜂𝑖, i=1,2…k.
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The Framework of Our Approach

8



Numerical Results
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Fig.2  Topology graph of 16-machine 68 bus power system

• We test it in the 16-

machine 68 bus power 

system through Power 

System Toolbox (PST);

• Sample frequency is 30

times / second;

• 380 testing cases: line

trip, load change, three

phase short circuit and

generator trip events at

various locations and on

different initial conditions.
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Dictionary Constructed offline
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• Step 1: offline construct dictionary atoms

• Line trip : Labeled by the line between two buses;

• Load change : Labeled by the bus number;

• Short circuit : Labeled by the bus number;

• Generator trip: Labeled by the number of the tripped generator;

• In total: 42 dictionary atoms, each of which has the dimensionality of 30
by 𝑟max

1 , are selected based on 190 training datasets.

Table I Dictionary atoms for four types of events

Dictionary Type The label of dictionary atoms

Line Trip 1-2, 4-14, 5-8, 12-11, 15-16, 30-32, 32-33, 33-34, 35-45, 42-41, 44-45

Short Circuit 2,3,8,12, 16, 25, 28, 31, 32, 33, 34 ,35, 36, 37, 39, 43, 44, 50, 53, 56, 59, 62

Load Change 15, 16, 24, 32, 41, 42, 47, 48

Generator Trip 1, 2, 10, 11, 13, 14, 15

[1] 𝑟𝑚𝑎𝑥 = 6 is the maximum rank of data matrix



Identification Results

Dictionary 

Type

Events 

Load Change Line Trip Short Circuit Generator Trip

Load Change at bus 17 2.6° 10.8° 9.5° 9.8°

Line 7-8 is tripped 12.2° 0.7° 12.0° 3.0°

Short circuit at bus 36 13.5° 11.6° 4.8° 11.4°

Generator 5 is tripped 12.8° 2.2° 12.5° 1.9°
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Table II Minimum subspace angles between a test case and the dictionary  

• Step 2: Online test four types of events

• We utilized 1 second of data;

• The subspace angles in Table II are the minimum one between
online data and dictionary atoms of each type;

• The bolder one, denoting the minimum one, points out the type of
event.



Identification and Location Performance
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Type of event IAR % AR

Line Trip 100 1.7 

Short Circuit 93.3 1.25

Load Change 100 1.5

Generator Trip 93.8 2.4

Table III Identification results of 380 testing datasets with different pre-conditions1

• Identification Accuracy Rate (IAR): the ratio of the number of

accurately identified events to the total number of events;

• Average Rank (AR): the average rank of the correct bus location in

descending order according to 𝜂𝑖 = (𝑈𝑘Σ𝑘)𝑖. 2 . The correct bus

denotes the bus that is closest to the location of the event.

[1] denotes the different operating conditions before the events and are measured by  η𝑎
𝑏 =

1

𝐿
 j=1
𝐿

𝑃𝑗
𝑏−𝑃𝑗

𝑎

𝑃𝑗
𝑎

, where 𝑃𝑗
𝑎denotes the active power on condition a and 𝐿 is the total number of lines.



Results of ISO-New England

• 22 training dataset of the three types (a)-(c) are employed to construct a 

dictionary of 6 atoms;

• 10 testing datasets are successfully identified;

• Notice that exponential filters1 ,are utilized to reduce noise before 

computing the subspaces in the training and testing datasets.  
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Identification Results

Dictionary Type 

Events

Load Change Short Circuit Line Trip

Load Change 1 𝟒. 𝟎𝟖° 16.91° 18.29°

Load Change 2 𝟑. 𝟏𝟐° 20.81° 14.39°

Fault 1 24.95° 𝟔. 𝟑𝟑° 23.86°

Fault 2 8.93° 𝟑. 𝟕𝟑° 15.76°

Line Trip 1 7.25° 5.85° 𝟑. 𝟗𝟑°

Line Trip 2 11.20° 30.21° 𝟒. 𝟐𝟕°
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Table VI Minimum subspace angles between a test case and the 

dictionary atoms of three types of events in recorded PMU data

• The minimum subspace angle of each row indicates the type of event.



Conclusions

• Our algorithm based on subspace can identify different 

types of events;

• It is efficient and only requires data in a short period of 

time;

• Can be implemented online algorithm and its 

requirements of storage is small; 

• Both the simulated data and recorded PMU data validate 

the effectiveness;

• Further research will focus on identification of successive 

multiple events.
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