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Abstract

Faults location in power grid is crucial to im-
prove power system stability, but existing meth-
ods have limitations including high sampling rate,
offline, or require the complete system observabil-
ity. This paper proposes to locate multiple types
of faults through a convolutional neural network
(CNN) in real-time when the system is fully or
partially measured by phasor measurements units
(PMU). Moreover, a greedy PMU placement al-
gorithm is designed to maximize the location ac-
curacy when limited buses are measured.

Background and Motivations

•More than 2000 PMUs are installed in the North
America, and algorithms based on PMU are
promising to automatically detect, locate and
identify abnormal conditions in power grid;

•Locating faults in real time is crucial to improve
the power system stability and reliability [1];

• Impedance-based methods often assume loads are
static and are sensitive to topology change;

•Traveling-wave-based method require high
sampling rate and accuracy of measurements;

•Artificial intelligent methods have some
limitations: High sampling rate like 2400 Hz [1],
DC model based [2], only for single fault and
complete observability required [2-3].

Feature Extraction

Given voltage PMU data of the power system with
n buses before and during fault U 0, U ′ ∈ Cn and
admittance matrix Y 0 ∈ Cn×n before the fault, and
∆U = U 0 − U ′, we first define the feature vector
ψ ∈ Cn in (1):
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Figure 1: The IEEE-68 bus system
ψ = Y 0∆U (1)

Interpretation of Feature ψ

Based on the substitution theory:
ψ = ∆Iu + ∆I (2)

•where ∆Iu is a sparse vector with nonzero values
at the terminal buses of the faulted line; ∆I
denotes current variations;

•Thus ψ is closely related to fault locations.

Example of Feature ψ
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Figure 2: The imaginary parts of ψ

•When the line 5-6
in Figure 1 is
faulted, the values
corresponding to
the bus 5 and 6 of
ψ are relatively
larger than others.

Our CNN Classifier and the Main Ideas
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Figure 3: CNN Structure

The Main Ideas of Our Method
•Extract feature vector ψj of the jth historical
PMU data with n lines and label them by the
faults locations;

•Train the CNN by inputting the extracted N
features ψj, j = 1, · · · , N ;

•CNN outputs the probabilities ȳji , i = 1, · · · , n
of jth data for the ith line;

•The line with the highest probability indicates
the fault location.

PMU Placement Algorithm

Given the number of measured buses m, the pro-
posed algorithm selects the ith bus having a large
degree di and largely reducing loss function (3).

Greedy PMU Placement

1: Input parameters: m,β = 1
2: Initialize : S0 = ∅ and the loss value l =∞
3: for k = 0, · · · ,m do
4: for bus i = 1, · · · , n do
5: Compute li = minΘ l(Θ, {Sk ∪ i}) of (3)
6: end for
7: i∗ = arg mini(βdi + li), where di is the degree

of bus i, β is a weight parameter.
8: if li∗ < l then
9: Sk+1 = {Sk ∪ i∗}, l = li∗

10: else
11: Sk+1 = Sk
12: end if
13: end for
14: Return: Sm

Algorithms Comparison

l′(Θ,S) = min
Θ

1
N

ΣN
j=1Σn

i=1y
j
i log ȳji (Θ,S) + λ‖Θ‖2

F

(3)
s.t. |S| ≤ m (4)

where Θ,S, λ,N denote the set of learned parame-
ters, the set of measured buses, regulation coefficient
and the total number of datasets, yji , ȳ

j
i are the label

and estimated probability of the jth dataset.
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Figure 4: LAR of CNN based on different algorithms
•Three phase short circuit (TP), line to
ground(LG), double line to ground (DLG) and
line to line (LL) faults are tested in the IEEE
68-bus power system;

•The location accuracy rate (LAR) based on the
‘Proposed’ algorithm is higher than others.

Numerical Results
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Figure 5: The LAR of CNN, MSVM, NN
•When the system is partially measured, the LAR
of CNN is higher than that of multi-class support
vector machine (MSVM) and NN.
Table 1: The ARC of CNN when ≤ 15% buses are measured

Measured Ratio TP LG DLG LL
7 % 1.32 1.48 1.92 1.56
10 % 1.38 1.28 1.66 1.54
15 % 1.38 1.23 1.57 1.54

•The lines are sorted according to their
probabilities from CNN and thus the Averaged
Rank of Correct (ARC) line is defined;

•The ARC, less than 2, indicates that the correct
is mostly within the lines of top-3 probability.

Conclusions

The proposed method is able to locate faults with
a high accuracy when system is fully or partial
measured, and the proposed algorithm is effective
to improve LAR with limited buses measured.
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