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Motivations of Event Identification

• Efficiently identifying large events 

are beneficial to avoid blackout 

and improve power system 

stability and reliability;

• More than 2000 Phasor 

measurement units  (PMUs) have 

been installed in the United 

States;

• A number of PMU data motivate 

people to monitor and control 

power system with data-driven

methods.
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Fig. 1 The satellite photograph shows the blackout in 2003  

https://www.snopes.com/fact-check/blackout-2/



Existing Approaches

• Recent development of event identification methods[1-5]:

• Advantages: 

o model-free, robust to model errors.

• Limitations:

o Single events or multiple events with long time intervals and 

minor overlapping;

o A large number of training datasets;

o No clear physical interpretations;

o High training complexity.
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Challenges of Identifying Successive Events
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Fig. 3 (a) Line 17-43 tripped at 1 s followed by line 25-26 tripped event at 2 s in the IEEE 68-bus power system.                 

• The two successive events in (a) are almost independent, 
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(b)

Challenges of Identifying Successive Events
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Fig. 4 (b) Generator at bus 4 tripped at 1 s followed by line 26-29 tripped at 2 s in the IEEE 68-bus power system. 

• The two successive events in (a) are almost independent, but the 

successive events in (b) are overlapping;

• Insufficient number of historical successive events for training;

• Goals

o Offline training of single events 

o Online identification of overlapping successive events
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Definition of Dominant Features

• Dominant Features:

o 𝑀1
𝑇 = 𝑦1, … , 𝑦𝑇 is a data matrix of 𝑚 PMU channels in 𝑇,

𝑀1
𝑇 ≈ 𝑈𝑟Σ𝑟𝑉𝑟

†

• 𝑈𝑟 , 𝑉𝑟 ∈ 𝐶
𝑚×𝑟 Σ𝑟 = 𝑑𝑖𝑎𝑔 𝜎1, ⋯ , 𝜎𝑟 are singular vectors and values.

o Since 𝑦𝑡 = 𝐴 𝑦𝑡−1 , the two data matrices in sequential windows:

𝑀1
𝑇 = 𝐴𝑀2

𝑇+1

o Define the eigenvalues of 𝐴 and 𝜎1, ⋯ , 𝜎𝑟 as the

𝒅𝒐𝒎𝒊𝒏𝒂𝒏𝒕 𝒇𝒆𝒂𝒕𝒖𝒓𝒆𝒔.

• Classification:

o The extracted dominant features are input to a 2-layer CNN

classifier.
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Offline Training

• Extract dominant Eigen 

values 𝝀 of the state 

matrix and singular 

values 𝝈 of the recorded 

single events as features;

• Input featrures (𝜆, 𝜎) to a 

2-layer CNN of two-path;

• Train the 2-layer CNN 

classifier to identify the 

type of an event.
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Online Testing

• Step 1: predict the impact of the 

first event after 𝑇2 and subtract it;

8
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Fig. 5 Online testing of successive events through three components



Online Testing

• Step 1: predict the impact of the 

first event after 𝑇2 and subtract it;

• Various methods can be 

employed to predict the 

measurements, such as time 

series analysis and Hankel matrix 

based methods [6-7]; 
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Online Testing

• Step 1: predict the impact of the 

first event after 𝑇2 and subtract it;

• Various methods can be 

employed to predict the 

measurements, such as time 

series analysis and Hankel matrix 

based methods [6-7];

• We apply the prediction method 

based on the dominant 

eigenvalues.
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Online Testing

• Step 2: The dominant features 

(𝝀, 𝝈) are extracted from the 

residual measurements; 
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Online Testing

• Step 2: The dominant features 

(𝝀, 𝝈) are extracted from the 

residual measurements; 

• Step 3: The trained CNN outputs 

the type of the second event in 

real time. 
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Numerical Results
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• Simulated datasets are generated by PSS/E in the IEEE 68-bus 

power system.  

• 967 single events are employed to train the classifier, and the CNN 

identifies 1136 successive events of different combinations as 

shown in Table , where “LT+GT”  denotes a line trip event is followed 

by a generator trip event. 

1IAR is the ratio of the number of correctly classified events to the total number of events.
2CNN-F represents the CNN with dominant features as inputs. 
3CNN-T represents the CNN with time series as inputs.

IAR % LT + GT LT + TP LT + LT GT + GT GT + TP TP +GT

CNN-F2 86.4 97.8 81.1 87.3 77.5 91.3

CNN-T3 63.8 65.3 80.5 63.1 26.5 85.8

Table 1.The Identification Accuracy Rate (IAR1) of 380 simulated datasets 



Performance with small training datasets

• The dominant features are robust to initial conditions, and the CNN-F 

achieves a higher IAR with small training datasets.

• The IAR of CNN-T is sensitive to the size of the training data.
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Fig. 6 The IAR of CNN-F and CNN-T when partial training datasets are available



The Impact of Subtracting the First Event
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Classifier Process LT % GT % TP % Overall %

CNN-F NS 79.4 68.3 96.4 81.9

CNN-F SP 95.9 89.1 97.3 94.2

CNN-T NS 94.8 83.2 78.4 85.1

CNN-T SP 73.2 62.4 78.4 71.5

Table 1. The performance comparison with and without subtracting the first event (Δ 𝑇=1𝑠)

• “Not Subtract (NS)” :using the data after the second event directly.

• “Subtract the Prediction (SP)” means using the residual data after 

subtracting the first event.

• Subtracting the impact of the first event can enhance CNN-F’s 

performance significantly. 

• CNN-F is robust to inaccuracies in the measurements.



Conclusions

• Compact features, like the dominant eigenvalues of the state 

matrix, are effective to characterize events and robust to initial 

conditions.

• The proposed CNN classifier trained on single events is able 

to identify successive events in real time.

• The CNN-F using the dominant features is robust to the 

measurement inaccuracies and small training datasets.

• The proposed prediction-subtraction process can reduce the 

impacts of earlier events and enhance the identification 

accuracy.
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