
I. Introduction
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Cascading failures involve complicated physical mechanisms, which cannot be accurately represented by a single model. People are
motivated to prevent cascading failures at an early stage by efficient event identification. Existing identification approaches have
limitations: 1) only for single events or multiple events with minor overlapping, 2) require a large number of training datasets, 3)
offline, but in reality insufficient successive events are available, and events occur close in time and location.
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௧బା் are data matrices of PMU channels
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the singular vectors and Λ௥ ൌ ݀݅ܽ݃ሺߪଵ,⋯ , ௥ሻߪ
collects the first singular	ݎ values. As there exists an
operator that	ܣ ௧ݕ ൌ ௧ିଵݕ	ܣ , we have
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Define the eigenvalues ⋯,ଵߣ , ௥ߣ of and	ܣ singular
values ⋯,ଵߪ , ௥ߪ of ௧బܯ

௧బା்ିଵ as the
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Let the ݅ th event occurs at ௜ܶ , i ൌ 1,2 . After the
second event occurs, there are still impacts of the first
events in the measures ܯ
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decomposition (DMD) or other ones.
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Then the residual data ෩ܯ
మ்
మ்ାఛcan represent the second

event only.
Therefore, the features of the second event can be
extracted from ෩ܯ

మ்
మ்ାఛ.

Challenges:
a. Successive events are 
overlapping in Fig. (a)-(c), 
b. Historical successive events 
are insufficient .
Goals: 
a. Identify overlapping
events within seconds.
b. Only using single events as 
training data.
c. Robust to insufficient 
training data.

Simulated datasets are generated by Power System Simulator for Engineering
(PSS/E) in the IEEE 68-bus power system. Identification Accurate Rate (IAR)
is the ratio of correctly identified events to the total events.

Fig. 2 The performances of CNN-F and CNN-T when partial training 
datasets are available

1: CNN-T, CNN-F represent the CNN with time series as inputs
and extracted features as inputs respectively.
2: Not Subtract (NS) means using the measurements ܯ

మ்
మ்ାఛafter

time ଶܶ;	Subtract the Prediction (SP) means using the residual
෩ܯ

మ்
మ்ାఛ in (2).

Second
Event Type

Time 
Interval

CNN-F1 CNN-T1

NS2 NP2 NS2 NP2

IAR (%) 0.5 85.5 93.1 80.1 61.0

IAR (%) 1 84.7 95.0 81.9 67.7

IAR (%) 1.5 88.2 92.4 85.9 78.2

IAR (%) 2 87.4 92.6 74.7 70.8

(d1, d2) (200,33) (200,100) (200,167)

IAR (%) 92.2 95.0 90.5

(d1, d2) (300,33) (300,100) (300,167)

IAR (%) 95.4 94.4 94.1

(d1, d2) (500,33) (500,100) (500,167)

IAR (%) 88.7 91.1 86.1

Table. 1 The performances of CNN-F and CNN-T on 1627 second events

Table. 2 The IAR of CNN-F when the start time of the  ݅th
event have di time delay 

Fig. 3  Sequence of events due to time delay

II. Problem Formulation V. Training and Testing of the Proposed CNN

III. Feature Extraction

IV. Online Prediction-Subtraction 

VI. Numerical Results

 The proposed CNN-F with SP
achieves a better performance.

 CNN-F with SP is more robust to
the small training data than CNN-T.

B. Robust to Small Training DataA. IAR of the Second Events
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VII. Conclusions
 The proposed two-layer CNN classifier is able to identify successive

events in real-time, is more robust to small training data than the CNN-T
with time series as inputs, and is robust to delays in event detection.

 The proposed CNN-F is robust when ଵܶ and ଶܶ are delayed by ݀ଵ and ݀ଶ.

C. Robust to Delays in Event Detection
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Fig. 1 Voltage magnitude of the bus when a line 
trip following a generator trip occurs nearby  


