Identifying Overlapping Successive Events Using
a Shallow Convolutional Neural Network

Wenting Li, Meng Wang
Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute

l. Introduction

Cascading failures involve complicated physical mechanisms, which cannot be accurately represented by a single model. People are
motivated to prevent cascading failures at an early stage by efficient event identification. Existing identification approaches have
limitations: 1) only for single events or multiple events with minor overlapping, 2) require a large number of training datasets, 3)
offline, but in reality insufficient successive events are available, and events occur close in time and location.
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Simulated datasets are generated by Power System Simulator for Engineering
(PSS/E) in the IEEE 68-bus power system. Identification Accurate Rate (IAR
is the ratio of correctly identified events to the total events.
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