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Abstract—The increasingly denser coverage of PMUs enables
dynamic visibility into power systems. The large amounts of data
obtained by PMUs impose significant challenges to data manage-
ment and information extraction. The spatial-temporal blocks of
PMU exhibit low-dimensional structures despite the high ambient
dimensions. The low-dimensionality can be exploited to enable
and simplify multiple PMU data management tasks under the
same framework. This paper summarizes our recent results on
data privacy enhancement, fast event identification, and further
development of missing data recovery.

Random noise and quantization are applied to the mea-
surements before transmission to compress data and enhance
data privacy. To maintain the data accuracy for the operator,
we develop novel methods to recover the original data from
quantized measurements even when partial measurements are
corrupted. A real-time event identification method is also pro-
posed, based on the new idea of characterizing an event by
the low-dimensional subspace spanned by the dominant singular
vectors of the data matrix. Additional structures in the PMU data
besides low-rankness are exploited to enhance the accuracy of
missing data recovery. All the methods are evaluated on synthetic
and historical PMU datasets.

Index Terms—phasor measurement units, data analytics, low
rank, spatial-temporal data

I. INTRODUCTION

DATA scarcity has been a major issue for power system
monitoring. The current Supervisory Control and Data

Acquisition (SCADA) systems typically provide measure-
ments every 2-4 seconds, offering only a steady state view
into the power system behavior. After the American Recovery
and Reinvestment Act of 2009 [27], two thousand multi-
channel phasor measurement units (PMUs)[22] have now been
installed North America [19]. PMUs can directly measure bus
voltage phasors and line current phasors at synchronized time
instants. With data rates of 30 or 60 samples per second,
these PMUs produce terabytes of data daily, offering dynamic
visibility into the power system.

This vast wealth of data is revolutionizing the operations
of power systems. Conventional practice requires accurate
modeling of power systems to compensate for the lack of
measurements. The current abundance of data enables the
development of data-oriented model-free methods in power
system monitoring. These methods can improve the accuracy
and reduce the latency of real-time situational awareness,
which is of vital importance for building a reliable and efficient
power grid.

As the coverage of PMUs in power systems becomes denser,
it is natural to collect data from PMUs in electrically close
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area over a certain period of time and process this spatial-
temporal blocks of PMU simultaneously. Interestingly, the
PMU data block exhibits low-dimensional structures despite
its high ambient dimension. The low-dimensional structure can
be exploited to enable and simplify a variety of PMU data
management tasks such as data compression, error correction,
and feature extraction. We have obtained promising results
on missing data recovery, detection of cyber data attacks by
exploiting this structure. This paper reports our recent progress
under this framework on further exploiting this structure
to enhance PMU data privacy, identify system events, and
enhancement and implementation of missing data recovery.

The remainder of this paper is organized as follows. Section
II explains the low-dimensional property of PMU data. Section
III discusses our proposed method to enhance the privacy
of individual users without sacrificing the data accuracy at
the operator. Section IV introduces our proposed method for
fast event identification by representing the events by low-
dimensional subspaces of the PMU data matrix. Section V
records our further development of missing data recovery.

II. LOW-DIMENSIONAL STRUCTURES OF PMU DATA
BLOCKS

We illustrate the low-rank property using the data from
PMUs deployed in six substations in Central New York power
system. The system diagram is shown in Fig. 1. Six PMUs
records 11 voltage phasors and 26 line current phasors at a
rate of 30 samples per second.
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Fig. 1. Six PMUs in the Central Power System

Fig. 2 shows the voltage magnitudes of PMU measurements.
A disturbance occurs at t ≈ 2.5 second. Let a 37 by 600
complex matrix L contain the voltage and current phasors
in 20 seconds. Each row corresponds to time series mea-
surements in one channel. Each column corresponds to the
PMU measurement at the same time instant. Singular value
decomposition (SVD) is applied to matrix L,

L = UΣV H , (1)
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Fig. 2. Recorded voltage magnitudes of PMU data

where Σ is the matrix with singular values on the main
diagonal, and U and V are the left and right singular vectors,
respectively, V H denotes the conjugate transpose of V .

The singular values are shown in Fig. 3. The largest singular
values is 894.5942, while the ninth largest one is 0.5930. We
could use a rank-8 matrix to approximate L with a negligible
error.
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Fig. 3. Singular values of the PMU data matrix in decreasing order

III. DATA PRIVACY

Due to the mismatch with communication networks that
were not designed to carry high-speed PMU data, data losses
and data quality degradations happen quite often, especially
in the Eastern interconnection [23]. On the other hand, data
privacy in smart grids is receiving increasing attentions. To
the best of our knowledge, only [28] considered protecting
the privacy of PMU data through encryption.

In [12], we proposed a simple signal processing approach
to achieve data compression and data privatization simul-
taneously for PMU data. Random noise are added to the
measurements to protect data privacy, and quantization is
applied afterwards to reduce the amount of information to
transmit. A similar idea appeared recently for sensor networks
[31]. Quantization can protect the data privacy, and adding
noise is known to enhance the privacy level of individual
users, measured by the differential privacy [8]. The privacy of
each PMU is enhanced because an intruder can only observe
highly quantized values even if it eavesdrops the data com-
munication from the PMUs to the operator. Such data privacy
is, however, achieved at a cost of reduced data accuracy.
Our major contribution is a data recovery method using the
quantized measurements from multiple PMUs such that the
recovery error compared with the actual data diminishes when
the number of PMUs increases. Therefore, the reduced data
transmission, privacy enhancement of individual utilities, and
the information accuracy for the central operator are achieved
simultaneously.

Let L∗, C∗ ∈ Rm×n denote the actual data and the sparse
additive errors in the measurements. Let M∗ = L∗ + C∗

denote the measurements that are partially erroneous. Let
N ∈ Rm×n denote the noise matrix which has i.i.d. entries
with known cumulative distribution function Φ(z). Given a
positive constant K, let [K] denote the set {1, ...,K}. A K-
level quantized noisy measurement Yij satisfies

Yij = Q(L∗ij + C∗ij +Nij), ∀(i, j), (2)

where the operator Q maps a real number to one of the K
labels. Given quantization boundaries ω0 < ω1 < ... < ωK ,

Q(x) = l if ωl−1 < x ≤ ωl, l ∈ [K]. (3)

Then, one can check that

Yij = l with probability fl(M∗ij), ∀(i, j), (4)

where
∑K

l=1 fl(M
∗
ij) = 1, and

fl(M
∗
ij) = P (Yij = l|M∗ij) = Φ(ωl−M∗ij)−Φ(ωl−1−M∗ij).

(5)
The data recovery problem is stated as follows.

(P1) Given quantized observations Y , noise distribution Φ,
and ωl, l ∈ [K], can we recover the actual data L∗?

To solve (P1), we proposed to estimate the unknown
(L∗, C∗) using a constrained maximum likelihood approach.
The negative log-likelihood function is given by

FY (X) = −
m∑
i=1

n∑
j=1

K∑
l=1

(1[Yij=l] log(fl(Xij))), (6)

where 1[A] denotes the indicator function that takes value ‘1’
if A is true and value ‘0’ otherwise. (6) is a convex function
in X when the function fl is log-concave in Xij . We estimate
(L∗, C∗) by (L̂, Ĉ), where

(L̂, Ĉ) = arg min
L,C
−
∑
i,j

K∑
l=1

1[Yij=l] log(fl(Lij + Cij)),

s.t. L+ C ∈ Sf ,

(7)

and the feasible set Sf is defined as

Sf := {X ∈ Rm×n : X = L+ C, ‖L‖∞ ≤ α, ‖C‖∞ ≤ α,

rank(L) ≤ r,
∑
ij

1[Cij 6=0] ≤ s}. (8)

(7) is nonconvex due to the nonconvexity of Sf .
The recovery accuracy of the global minimizer of (7) is

discussed in [12]. We provided the information theoretical
limit of solving (P1) and demonstrated that the recovery
accuracy of the global minimizer of (7) is order-wise optimal.
We also proposed an approximate algorithm to solve (7). The
algorithm alternatively updates L∗ and C∗ while fixing the
other matrix.

We test our method on actual PMU dataset shown in Fig.
2. We set K = 5 with quantization boundaries ω0 = −∞,
ω1 = −0.3, ω2 = 0, ω3 = 0.5, ω4 = 1.2 and ω5 = ∞.
Fig. 4 shows the original data, the quantized value with 5%
of corruptions, and the recovered data of channels 4 and 20



from time 0 to 3.5 second. One can see that the details of the
time series are masked in the quantized measurements. The
recovered data are noisier than the actual data because we
add noise to each channel with a noise level comparable to
the signal level before quantization. Still, the overall trend of
the time series are correctly recovered. If needed, the noise in
the recovered data could be removed by applying a low-pass
filter. Fig. 5 compares our method with simply using the mean
value of each bin as the estimate and an existing data recovery
method QRPCA [16]. Our method performs the best.

0 0.5 1 1.5 2 2.5 3 3.5

Time (s)

0

0.2

0.4

0.6

0.8

1

Original data (channel 4)
Original data (channel 20)
Recovery data (channel 4)
Recovery data (channel 20)

0 0.5 1 1.5 2 2.5 3 3.5

Time (s)

1

2

3

4

5

Quantized data (channel 20)
Quantized data (channel 4)

Fig. 4. Original, quantized, and recovered data of channels 4 and 20
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Fig. 5. Relative recovery error on actual PMU data

IV. DISTURBANCE IDENTIFICATION

Faults in power systems can potentially lead to cascading
failures if the operator does not take the right action in time.
Various methods have been developed to identify events like
generator trips [2], line outages [3], [26], [32], and oscillations
[7], [18], [29]. Most of the event identification methods are
model-based (see e.g., [24], [26], [32]), while data-driven
event identification methods are developed recently, e.g., [1],
[4], [5], [13], [15], [25], [30]. Data-drive approaches have
the advantage that no modeling is needed and attract much
attention with the increasing quantity of PMU data. The
limitations of these approaches include the high requirement
on the memory and storage, and the computational complexity,
especially for massive datasets.

We proposed a novel data-driven fast identification method
in [17]. The central idea is to represent a spatial-temporal
block of PMU data by its low-dimensional row subspace.
These subspaces can be easily obtained through Singular Value
Decomposition. We showed that the subspace characterizes
the dominant system dynamics and is robust to initial condi-
tions of the events. Compared with directly using time series

measurements, the low-dimensional subspace is a compact
representation of the system events. For example, Fig. 6 shows
the voltage magnitudes of two line trip events at different
locations in New England. Although they look different due
to different initial conditions, the angle of their corresponding
subspaces of the data in one second after the event is only
6.04◦. A small subspace angle indicates the similarity of two
subspaces.

(a) The line L1 is tripped (b) The line L2 is tripped

Fig. 6. Voltage magnitudes of three types of events in New England.

We proposed to represent different events by their corre-
sponding low-dimensional subspaces of the data matrices. The
proposed event identification method constructs a dictionary
of these subspaces of different events offline. The size of the
dictionary is significantly reduced compared with using PMU
data directly due to the compactness of the subspace and its
robustness to initial conditions. Once an event happens, the
subspace of the data in 1-5 seconds after the event starting
point would be computed and compared with the dictionary.
The event would be identified as a type of event based on the
most similar event in the dictionary. The event is located based
on the PMU channel that has the most significant change after
the event.

We validated this method on 380 simulated events, including
load change, line trip and three-phase short circuit events, in
the IEEE 16-generator 68-bus test system. Table I demon-
strates 3 sample test cases. The minimum angles between
the row subspace of the event and dictionary types (DT) are
recorded. One can see that the minimum subspace angle is
indeed achieved between an event and a dictionary atom with
the same event type. Table II shows identification performance
of these 380 cases, where Identification Accuracy Rate (IAR),
Approximate Location Accuracy Rate (ALAR) and Exact
Location Accuracy Rate (ELAR) are explained in details in
[17]. In addition, we also verified our method on the historical
datasets in New England. We tested on 21 events including
load change, line trip and short circuit events with 100% IAR.

TABLE I
MINIMUM SUBSPACE ANGLES BETWEEN A TEST CASE AND DICTIONARY

ATOMS WITH DIFFERENT INITIAL CONDITIONS

Events
DT Load Change Line Trip Short Circuit

Load Change 1 1.03 10.63 18.50
Line Trip 1-30 11.80 0.67 14.32
Short Circuit 5 21.18 11.75 1.97



TABLE II
IDENTIFICATION RESULTS OF 380 CASES WITH DIFFERENT INITIAL

CONDITIONS

Type of event IAR % ELAR % ALAR %
Line Trip 100 85 94 (among 3 buses)

Short Circuit 100 77 90 (among top 3 buses)
Load Change 100 46 90 (among top 5 buses)

V. MISSING DATA RECOVERY

Due to the early deployment of older PMUs and the mis-
match with communication networks that were not designed
to carry high-speed PMU data, data losses and data quality
degradations are quite often, especially in the Eastern inter-
connection [23]. The unreliability of PMU data is a bottleneck
for incorporating them into control-room operations. Missing
PMU data recovery is an important pre-processing step for the
subsequent applications.

In our paper [11], we proposed data recovery algorithms
based on the low-rank property of the PMU data. Our de-
veloped online missing data recovery algorithm, termed as
OLAP, can recover the missing points in streaming data. We
also implemented OLAP as an action adaptor on openPDC
[20] to facilitate the testing and potential adoption from
utilities and ISOs. The openPDC is an open-source PMU data
stream processor that is available for the users to build new
functionalities transparently. Fig. 7 shows the interface of the
OLAP algorithm running on openPDC.

Recovered 
frequency data

Original frequency data 
with missing points

Fig. 7. Software interface of our OLAP missing data recovery method
implemented on openPDC.

To further enhance the data recovery accuracy, we exploited
other spatial and temporal correlations in the PMU data matrix
besides the low-rankness. In [10], we proposed a new model,
termed as “union and sums of subspaces”, to characterize the
structures of the measurements under multiple disturbances.
Each row of the PMU matrix represents the observations of
a bus voltage or a line current across time. One disturbance
may affect nearby voltages and currents, and the corresponding
rows belong to the same low-dimensional subspace. Quantities
affected by multiple overlapping disturbances belong to the
sum of subspaces.

We proposed a new method to recover missing entries under
this model. Its performance was evaluated in the IEEE 39-
bus New England Power System (Fig. 8). Assume two events

happen consecutively due to the sudden drop of the active
power generations of two generators. Generator 32 drops at
t = 0.07 s, and generator 33 drops at t = 0.6 s. Fig. 9
shows the active power of generator 32 and 33 and the voltage
magnitudes at bus 2, 6 and 12. We assume sixteen PMUs
are installed in the power system. Each PMU measures the
voltage phasor at the corresponding bus. We delete some
measurements uniformly at random for each channel and
test the recovery performance of Singular Value Thresholding
(SVT) [6], a high-rank matrix completion (HRMC) method
in [9], and our method. As shown in Fig. 10, our method
outperforms SVT and HRMC when pavg is below 0.2.

Fig. 8. IEEE 39 New England Power System [14][21]. We assume that
sixteen PMUs are installed at bus 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 26, 33,
36, 37, 38 and 39.
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Fig. 9. (a) Active power of generator 32 and 33; (b) Voltage magnitudes at
bus 2, 6 and 12.
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Fig. 10. Relative recovery errors of SVT, HRMC, and our method on the
simulated PMU data.

We recently demonstrated that the temporal correlations in
the data can be represented by the low-rank property of the



Hankel matrix. Let vector yt ∈ Cm denote the PMU data at
instant t, where m is the number of PMU channels, then the
PMU data from time 1 to t is represented by

Y (1, t) =
[
y1 y2 · · · yt

]
. (9)

A Hankel matrix is defined as

Y k
H(1, t) =


y1 y2 · · · yt−k+1

y2 y3 · · · yt−k+2

...
...

. . . . . .
yk yk+1 · · · yt

 , (10)

where k is called a pencil parameter. In this case, the size of
the Hankel matrix constructed with y1 ∼ yt is km×(t−k+1).

Leveraging the low-rank property of the Hankel matrix,
we developed a new data recovery algorithm, referred to as
OLAP-H. The advantage of OLAP-H over OLAP is that it can
recover missing points even under extreme conditions when
simultaneous and consecutive data losses happen. OLAP-H is
also more robust to measurement noise.

Fig. 11 shows the recorded voltage phasors of five PMUs
provided by Korea Electric Power Corporation. If 10% mea-
surements are erased randomly, an example of the recovered
data with OLAP method is shown in Fig. 12, while the
recovered data with OLAP-H method is shown in Fig. 13.
Compared with the recovered data by OLAP, no obvious
spikes exist in the recovered data by OLAP-H.
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Fig. 11. Recorded voltage magnitudes of five PMUs
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Fig. 12. Recovered data with OLAP method
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Fig. 13. Recovered data with the developed method

VI. CONCLUSION AND DISCUSSIONS

This paper describes a framework for PMU data manage-
ment and analysis by exploiting the low-dimensional structures
of spatial-temporal PMU data blocks. Exploiting this low-
dimensional structure can enable and simplify multiple data
processing tasks such as the reconstruction of missing points
and the correction of bad measurements and cyber data attacks.
This paper reports our recent work in this direction to recover
data from highly quantized and erroneous measurements,
identify disturbance in real time, and recover data losses. It is
interesting to explore the application of this structure in other
tasks such as model identification and oscillation detection.
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