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1 Project description
This project is to implement an approximate inference method to perform inference on the CHILD

Bayesian Network below.

Figure 1: CHILD Bayesian Network

The CHILD network is for diagnosing congenital heart disease in a new born blue baby. It provides
a mechanism so that both clinical expertise and available data can be exploited to generate diagnostic aid.
Further information on the network can be found in [1]. Figure 1 shows the CHILD Bayesian Network.
The basic information of the network is as follows: Number of nodes: 20; Number of arcs: 25; Number of
parameters: 230; Size of node: 2,3,4,5 or 6.

Each node is discrete, with different number of states. Possible states for each variable are: Birth As-
phyxia:{“yes”, “no”} ;
Disease: {“PFC”, “TGA”, “Fallot”, “PAIVS”, “TAPVD”, “Lung”} ;
Age:{“0-3 days”, “4-10 daysv11-30 days”} ;
LVH:{“yes”, “no”} ;
Duct flow: {“Lt to Rt”, “None”, “Rt to Lt”} ;
Cardiac mixing: {“None”, “Mild”, “Complete”, “Transparent”} ;
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Lung parenchema: {“Normal”, “Oedema”, “Abnormal”} ;
Lung flow: {“Normal”, “Low”, “High”} ;
Sick: {“yes”, “no”} ;
Hypoxia distribution: {“equal”, “unequal”};
Hypoxia in O2: {“None”, “Moderate”, “Severe ”};
CO2: {“Normal”, “Low”, “High”};
Chest X-ray: {“Normal”, “Oligaemic”, “Plethoric”, “Grd.Glass”, “Asy/Patchy”};
Grunting: {“yes”, “no”};
LVH report: {“yes”, “no”};
Lower body O2: {“<5”, “5-12”, “12+”};
RUQ O2: {“<5”, “5-12”, “12+”};
CO2 report: {“<7.5”, “>=7.5”};
X-ray report: {“Normal”, “Oligaemic”, “Plethoric”, “Grd.Glass”, “Asy/Patchy”};
Grunting Report: {“yes”, “no”};

2 Introduction
Given the BN and its parameterization, the aim of this project is to perform the following inference

tasks
1) Posterior probability inference: Compute p(Birth Asphyxia=yes | CO2report =“<7.5”, LVHReport=yes,
and X-rayReport=Plethoric);
2) MAP inference: Disease*=argmax Disease p(Disease | CO2report =“<7.5”, LVHReport=yes, and X-
rayReport=Plethoric).

There are generally four methods to approximate the inference: loopy belief, sampling, variational,
and model-simulation methods. The sampling methods, including logic sampling, likelihood weighted and
Markov Chain Monte Carlo (MCMC), are one of the most popular ones, and the “Gibbs Sampling Method”
(GSM) is the simplest one of MCMC methods. Thus we select GSM due to its simplicity, efficiency and
theoretical guarantees to achieve the above tasks. As comparison, one variational method called “mean field
method” will also be derived, implemented and discussed.

3 Theoretical Analysis
In this section, the theoretical analysis of GSM will be introduced.

3.1 The theory of Gibbs Sampling and the Algorithm
The basic idea of GSM is to generate a new sample based on the values of the previous sample, and any

new sample only has one different variable with the previous sample. In this way, this sampling method can
estimate the inference of Bayesian networks with a large number of variables. Let Xi, i = 1, · · · , 17 be ,
ei, i = 1, · · · , 3 be CO2report, LVHReport, X-rayReport.
The Gibbs sampling

The main idea of this method is to sample from stochastic process. According to the Markov Chain
theory, as long as the samples follow the Markov Chain 1 and ergodic 2, then the limit of all the states exist,
and these limits are exactly the stationary distribution. Therefore, this method need to sample after the

1means the current state only depends on the last state but has nothing to do with the other previous states.
2means that a state or all states of a chain are recurrent but not periodic.
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Algorithm 1 The Single Chain Gibbs Sampling Method
1: Input: burn in period t, skip steps k, and iteration times N .
2: Initialize all the states X = {X1, · · · , X17} by some random binary numbers according to their total

number of states, and e = e1, e2, e3. Let n = 0;
3: for i = 1, · · · , N do
4: Random pick the jth (j ∈ [1, 17]) state of X;
5: Update the value of the state Xj by obtaining the sample xi+1

j following the distribution
p(Xj|xi−j, e) = p(Xj|MB(Xj)) of (1);

6: while other states are kept the same xi+1
k = xik, k 6= j;

7: Form a sample of xi+1;
8: if i = t+ nk then
9: Return the sample xt+nk . Collecting Sampling Results

10: n = n+ 1;

stochastic process goes to the “burn-in period” to ensure the sample follows the stationary distribution or
the true distribution. In this case, the initial conditions do not influence the eventual estimation if sample
number is sufficiently large to enter the burn-in period.

Another key point of this method is that the probability of one state variable X t
k of a new sample at the

time t can be determined by the transition model p(X t+1
k |xt/xtk, e), which can be locally computed based

on the Markov Blanket method. Specifically, the transition model p(Xj|xi−j, e) satisfies

p(Xj|xi−j, e) = p(Xj|MB(Xj)) (1)

=
p(Xj|π(Xj))Π

k
i=1p(Yi|π(Yi))

Σxjp(xj|π(xj))Πk
i=1p(Yi|π(Yi))

(2)

where π(X) denotes the parents of X , Yi is the ith child of Xj’s kth children.

3.2 The discussion of Gibbs sampling method
Although there are rigorous theoretical guarantees that the GMS can eventually be sufficiently close to

the true value, there are some open issues of implementation.

1. The burn-in period. There is no theoretical guarantees about how to set the burn-in period to ensure
the exactness of the inference, and the most practical way is by trials and errors.

2. Whether a long chain or multiple chain is better to sample the results. A long chain only requires one
burn-in period and skip time, but the samples are more likely to be correlated than multiple chain, but
many different burn-in periods need to be identified if multiple chains are employed simultaneously.
The common way in reality is to combine these two method.

3. The correlations between samples need to be reduced, thus a skip time need to be defined between any
two samples, but the specific way of selecting a reasonable skip time can not be clearly specified. Due
to these open questions, the effects of these parameters will be tested and discussed in our problem
numerically.
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3.3 The theory and algorithms of mean field method

Derivations of mean field method
The main idea of mean field method is to compute a surrogate distribution q(x|β),x, β ∈ Rn to approx-

imate the original complex distribution p(X|E), where X are the unknown variables, E are evidence, and
the choice of this surrogate distribution is by assuming that all the variables are independent, that is,

q(x|β) = Πn
i=1q(xi|βi) (3)

Let ELBO(x, β) = f(x, β) = −Σxq(x|β) log(q(x|β)) + Σxq(x|β) log(p(X,E)). To approximate the
unknown distribution P (X|E), we can obtain the parameters β by maximizing f(x, β).

f(x, β) = −Σxq(x|β) log(q(x|β)) + Σxq(x|β) log(p(X,E)) (4)
= −Σn

i=1Σxiq(xi|βi) log(q(xi|βi)) + Σxq(x|β) log(p(X,E)) (5)
= −Σn

i=1Σxiq(xi|βi) log(q(xi|βi)) + Σn
i=1q(xi|βi)ΣX−i

Πxj∈X−i
q(xj|βj)) log(p(X−i, xi,E) (6)

= −Σn
i=1Σxiq(xi|βi) log(q(xi|βi)) + Eq(X−i)(log(p(X−i, xi,E)) (7)

(8)

where Eq(X−i)(log(p(X−i, xi,E)) denotes the expectation of log(p(X−i, xi,E) based on the probability
Πxj∈X−i

q(xj|βj)). To satisfy the first order optimal condition, we set the derivative of (4) to be 0.
For our discrete BN, we can derive the gradient of βik, i = 1, · · · , n, k = 1, · · · , Ki, where Ki is the

number of states of the ith node.

dq(xi|βi)
dβik

=


1 if xi = k, k < Ki

0 if xi 6= k, k < Ki

−1 if xi = Ki

(9)

Then we obtain the gradient of ∂(f)
∂(βik)

,

∂(f)

∂(βik)
= −Σxi(1 + log(q(xi|βi))

dq(xi|βi)
dβik

) + Σxi

dq(xi|βi)
dβik

Eq(X−i) log(p(X−i, xi,E) = 0 (10)

By plugging (9) to (10), we acquire the equation of

log(q(xi = k|βi) = Eq(X−i) log(p(X−i, xi = k,E) + log(q(xi = Ki|βi)− Eq(X−i) log(p(X−i, xi = Ki,E)
(11)

Take the exponential operator on both side, then we obtain the closed form expression of βik,

βik =
Eq(X−i) log(p(X−i, xi = k,E)

ΣKi
l=1Eq(X−i) log(p(X−i, xi = l,E)

(12)

Thus we can update all the βik, i = 1, · · · , n, k = 1, · · · , Ki until converge.
Furthermore, we can simplify the Eq(X−i) log(p(X−i, xi = l,E)) by the Bayesian chain rule, which

represents the joint probability p(X−i, xi = l,E) by the product of condition probability Πn
m=1p(xm|π(xm).

Eq(X−i) log(p(X−i, xi = k,E)) = Eq(X−i) log(Πn
m=1p(xm|π(xm)) (13)

= Σn
m=1Eq(X−i) log(p(xm|π(xm)) (14)

where xm = k if m = i, and xm = e if m ∈ E.
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Algorithm 2 The mean field method 2
1: Input: The evidence e and unknown variables X of BN, and the convergence threshold σ.
2: Output: The parameters βik, i = 1, · · · , n, k = 1, · · · , Ki, where n is the number of nodes and Ki is

the number of states of the ith node.
3: Initialize βik by some random values.
4: while βik not converge do
5: Compute the βik by (9), (10) and (12).
6: Return βi, i = 1, · · · , n

Discussion of the mean field method The primary issue of the mean field method is the accuracy. There
always exist some difference between q(X|β) with p(X, |E)unless all the nodes of the BN are independent.
Moreover, the mean field method also relies on the initialization. The advantage is that the close formed
solution of βik id deduced without employing the gradient decent to estimate the parameters.

4 Numerical Results

4.1 Task 1: Inference result
P(Birth Asphyxia=yes | CO2report :“<7.5”, LVHReport:yes, X-rayReport:Plethoric) = 0.0813.

The basic parameters are summarized as follows. Sample number is 100000, burn-in period is 10000 ,
skip time is 100. The algorithm is implemented by MATLAB, and the codes are attached.

4.2 Task 2: MAP inference
Disease* = arg max p(Disease |CO2report :“<7.5”, LVHReport:yes, X-rayReport:Plethoric)= “PAIVS”

with the probability 0.6873.

As the node “Disease” has 6 states, {“PFC”, “TGA”, “Fallot”, “PAIVS”, “TAPVD”, “Lung”}. The
conditional probability of all these states are also computed: p(Disease | CO2report :“<7.5”, LVHRe-
port:yes, X-rayReport:Plethoric) = [0.0237 0.1028 0.1428 0.6873 0.0109 0.0325]. Thus p(Disease = TGA
| CO2report :“<7.5”, LVHReport:yes, X-rayReport:Plethoric) is the maximum.

Evaluation of Gibbs Sampling Algorithm

The advantages of Gibbs Sampling Algorithm 1 have four aspects: 1) Simplicity of implementation; 2)
Theoretical guarantees; 3) Parallelizable and hardware implementation; 4) Suitable for a large number of
network sizes. On the other hand, the disadvantages include: 1) Can be slow to converge, and it is difficult
to determine the convergence especially there is some extreme probability or the evidence probability is
very low; 2) The determination of some parameters has no theoretical guarantees, such as “burn-in period”,
“skip steps”, and how to avoid the data correlations; 3) No rigorous criterion to illustrate whether the chain
works or not.

4.3 The Effect of Sampling Times on the Inference
We keep the same setup of skip steps being 100, , the same initialization,burn-in time being 10000, and

then change the sample numbers from 10 to 100000. From the results we can observe that after 10000
sample times, the inference result converges, thus for the latter results the sample times is set to be 10000,
but when the sample number is too small (less than 500 in this project), for example, when sample times
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Figure 2: The effects of sampling time with inference results

Table 1: The effects of sampling time with inference results
Sample Times 50 100 500 1000 5000 8000 10000 50000 100000

Inference 0.1000 0.0500 0.0820 0.0820 0.0790 0.0798 0.0766 0.0793 0.0813

are 100, the inference is 0.05 far from the true value. Thus if not sufficient number of samples are provided,
the inference results have relatively large errors.

4.4 The Effect of Initialization on the Inference
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Figure 3: The effects of different initialization with inference results for various sample numbers

Table 2: The inference results when using different initialization with 100000 samples
Inference 0.0818 0.0816 0.0815 0.0804 0.0805 0.0830 0.08144 0.0815 0.0812 0.0814
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4.5 The Effect of Burn-in Time on the Inference
By fixing burn-in period to be 10000, skip time to be 100. Considering the significance of sample

numbers, we analyze the relations between different initial conditions to the inference results when the
sample number is 5000, 50000 and 100000 respectively. From the results shown in the Table 2, we can
observe that when the samples are relatively small, like 5000 samples, different initial conditions may
cause the inference results to be various, but when sufficient number of samples are generated, like the
orange line when sample number is 100000, the influence of different initial conditions is almost invisible.
Therefore, the inference results are not changed by different initialization. We keep the same setup of skip
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Figure 4: ( The effects of burn-in period with inference results when different samples

Table 3: The effects of burn-in period with inference results when sample number is 100000
Burn-in Period 10 50 100 500 1000 5000 10000 30000

Inference 0.0812 0.0805 0.0807 0.0817 0.0818 0.0808 0.0826 0.0811

steps being 100, the same initialization, and change the burn-in period from 1 to 50000 to study the relations
between inference and burn-in period. These relations are illustrated when sample numbers are small and
large respectively in the Figure 4. When only generate 5000 samples, the inference results can be different
for different initial conditions, but when sample numbers increase to 50000 and even 500000, the results are
almost not influenced by various initial conditions. Thus if sample numbers are small, like the blue curves,
a larger burn-in period is more likely to converge to the true value but if the burn-in period is too small
(less than 2000), the inference can have a relatively large error. Compare the yellow, blue and red curves,
we can find that when the sample numbers are larger enough (more than 500000), even a relatively smaller
burn-in time still can be close to the true inference. For example, in Table 3, when the sample number is
larger (50000 in this case), the inference is close to the true value even when the burn-in period is smaller
than 100. Therefore, if the sample numbers are small, a larger burn-in period is more likely to converge
to the true value, and if the sample numbers are sufficiently larger, the influence of various burn-in period
becomes not obvious.

4.6 The Effect of Skip Time on the Inference
We keep the same setup of burn-in time being 10000, the same initialization, and then change the skip

time from 1 to 600 when the sample number is 5000, 50000 and 500000 respectively, as shown on the left
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Figure 5: The effects of skip time with inference results when sample number changes from 1000 to 100000

Table 4: The effects of skip time with inference results when sample number is 100000
Skip Times (steps) 5 10 50 100 200 300 400 500 600

Inference 0.0853 0.0835 0.0827 0.0820 0.0804 0.0816 0.0799 0.0812 0.0804

figure of Figure 5. When the samples are sufficiently large, like the yellow and red lines, we can observe
that when skip time larger than 50, the inference results converge to the same value. When the samples are
relatively small, like the blue line, a too large or too small skip can both produce an inference with larger
errors and the results are not stable. Thus to reach a reliable inference result, the sample numbers should
large enough, here larger than 50000 is suggested, and then a large skip time can ensure the convergence of
the inference.

In generally, the influences of initial conditions, skip time, burn in period all can be largely reduced when
sample number is sufficiently large. This is a beneficial for the complication of choosing proper parameters.
As long as the computer has enough computation capability, there is no need to tune the best parameters but
only need to generate enough samples. This property enable Gibbs sampling method has the potential to be
widely applied to more complicated and large scale BN and may solve some more challenging problem in
the future.

4.7 The Results of Mean Field Method
The mean field method is also implemented, and the results of the two tasks are summarized as follows:

4.7.1 Task 1: Inference result

P(Birth Asphyxia=yes | CO2report :“<7.5”, LVHReport:yes, X-rayReport:Plethoric) = 0.0673.

The speed of convergence is very fast, which only need about 6 iterations although more than 1000
iterations are tested. As we deduced theoretically, there is still a gap between the true inference and the
estimated result since there are some independence of the BN ignored in this algorithm. Thus mean field
method can provide a lower bound of the true inference.
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4.7.2 Task 2: MAP inference

Disease* = arg max p(Disease |CO2report :“<7.5”, LVHReport:yes, X-rayReport:Plethoric) = “PAIVS”
with the probability 0.9437.

The estimated inference by mean field method of “Disease = PAIVS” has some difference with that
of Gibbs sampling method, but the state of “PAIVS” is correctly determined as the one with the highest
probability.

5 Conclusions and Discussion
Both Gibbs sampling and mean field methods can approximately estimate the inference. Compared

with mean field method, Gibbs sampling method is much simpler and accurate. One practical tip of setting
the parameters is that first ensure the sample numbers are larger enough, and then select relative larger
skip time, burn-in period and random initialization can usually converge to close to the true value, and as
long as the samples are sufficiently larger, the influence of different parameters can be largely reduced.
Therefore, Gibbs sampling methods are easily applied widely, especially when the capacity of computer
is enhanced significantly in the future. For the mean field method, the accuracy is difficult to be ensured,
especially when the BN has dense links or dependence, and the computation complexity increases when
BN are densely connected.

Appendix: Matlab code
Instructions of running the codes of Gibbs Sampling Method This function is to compute the posterior
probability inference “Inference” and the MAP inference “MAP” of this project through Gibbs sampling
method of multiple chains. The input parameters include burn in period, skip time, sample numbers and the
number of chains. Notice that the absolute path of the parameter and structure files “parameter.mat” and
“structure.mat” should be modified according to location in your computer.

The Gibbs sampling of Multiple Chains

1
2 % Gibbs Sampling Method to compute P(X|E)
3 f unc t i on [ In f e r ence , MAP] = Gibbs sample ( burn in , skip , sample num )
4 %input :
5 %burn in −− The burn−in per iod ;
6 %sk ip −− The sk ip time ;
7 %sample num −− The number o f samples ;
8 %num chain −− The number o f Markov cha ins that user want to use

to generate the samples
9 %output :

10 %I n f e r e n c e −− The p o s t e r i e r i n f e r e n c e p( Birth Asphyxia=yes |
CO2report : ` ` < 7.5 ' ' , LVHReport : yes , %X−rayReport : P l e t h o r i c )

11 % MAP −− The MAP i n f e r e n c e o f Disease
12 % load data
13 load ( ' .\ parameter . mat' ) ;
14 load ( ' .\ s t r u c t u r e . mat' ) ;
15 %% parameters
16 total num = 20 ;
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17 unknown num = 17 ;
18 t imes = 1 ;
19 unknown ind = [ 1 : 1 4 , 16 :17 , 2 0 ] ;
20 var iab le names = {BirthAsphyxia , Disease , Age , LVH, DuctFlow ,

CardiacMixing , LungParench , ...
21 LungFlow , Sick , HypDistrib , HypoxiaInO2 , CO2, ChestXray ,

Grunting , LVHreport , LowerBodyO2 , ...
22 RUQO2, CO2Report , XrayReport , GruntingReport } ;
23 i ter num = 100000000;
24 %% i n i t i a l i z e
25 f o r k = 1 : total num
26 X( k ) = randi ( domain counts ( k ) ) ;
27 end
28 X(18) = 1 ; X(15) = 1 ; X(19) = 3 ;
29 samples = [ ] ;
30 f o r i = 1 : i ter num
31 %% randomly pick one s t a t e
32 j = randi (unknown num) ;
33 index = unknown ind ( j ) ;
34 %% update X( index )
35 prob = ze ro s ( domain counts ( index ) ,1 ) ;
36 c h i l d r e n = f i n d ( dag ( index , : ) == 1) ;
37 child num = sum( dag ( index , : ) ) ;
38 f o r s = 1 : domain counts ( index )
39 X(1 , index ) = s ;
40 [ P index ] = P node ( var iable names , domain counts , index

, dag , X ) ;
41 temp =1;
42 f o r l =1: child num
43 [ P ch i ld ] = P node ( var iable names , domain counts ,

c h i l d r e n ( l ) , dag , X ) ;
44 temp = temp * P ch i ld ;
45 end
46 prob ( s ) = P index * temp ;
47 end
48 prob = prob . / sum( prob ) ;
49 X(1 , index ) = sample k ( prob ) ;
50
51 %% sample a f t e r t burn−in per iod with sk ip time k
52 i f i == burn in+sk ip * t imes
53 samples = [ samples ; X ] ;
54 t imes = times + 1 ;
55 end
56 i f s i z e ( samples , 1) == sample num
57 d i sp l ay ( 'Samples are enough ! ' )
58 break
59 end
60 end
61 I n f e r e n c e = numel ( f i n d ( samples ( : , 1 ) == 1) ) / s i z e ( samples , 1 )
62 MAP Infer = ze ro s (1 , 6 ) ;
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63 f o r k =1:6
64 MAP Infer ( k ) = numel ( f i n d ( samples ( : , 2 ) == k ) ) / s i z e (

samples , 1 ) ;
65 end
66 MAP = f i n d ( MAP Infer == max( MAP Infer ) ) ;
67 end
68
69 % This sub−f unc t i on i s to generate a new sample g iven the cur r ent s t a t e s

X and some parameters .
70 f unc t i on [X ] = gener sample (unknown num , unknown ind , var iable names , dag ,

X)
71 % input :
72 % unknown num −− The number o f v a r i a b l e s that are unknown ;
73 % unknown ind −− The index o f the unknown v a r i a b l e s ;
74 % var iab le names −− The v a r i a b l e names ;
75 % dag −− The r e l a t i o n s between the parents and c h i l d r e n
76 % X −− The cur rent s t a t e s o f a l l the nodes
77 % output :
78 % X −− The updated s t a t e s o f a l l the nodes
79 %% randomly pick one s t a t e
80 j = randi (unknown num) ;
81 index = unknown ind ( j ) ;
82 %% update X( index )
83 prob = ze ro s ( domain counts ( index ) ,1 ) ;
84 c h i l d r e n = f i n d ( dag ( index , : ) == 1) ;
85 child num = sum( dag ( index , : ) ) ;
86 f o r s = 1 : domain counts ( index )
87 X(1 , index ) = s ;
88 [ P index ] = P node ( var iable names , domain counts , index , dag ,

X ) ;
89 temp =1;
90 f o r l =1: child num
91 [ P ch i ld ] = P node ( var iable names , domain counts , c h i l d r e n (

l ) , dag , X ) ;
92 temp = temp * P ch i ld ;
93 end
94 prob ( s ) = P index * temp ;
95 end
96 prob = prob . / sum( prob ) ;
97 X(1 , index ) = sample k ( prob ) ;
98 end
99

100 % This sub−f unc t i on i s to compute the p r o b a b i l i t y o f the node ' index '
given i t s Markov Blanket .

101 %input :
102 % var iab le names −− The c o n d i t i o n a l p r o b a b i l i t y ;
103 % domain counts −− a l l the number o f s t a t e s o f nodes ;
104 % index −− The index o f the node
105 % dag −− The r e l a t i o n s o f the parents o f nodes
106 % X −− The cur rent s t a t e s o f a l l nodes
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107 % output :
108 % P index −− Condi t iona l p r o b a b i l i t y o f node index
109 f unc t i on [ P index ] = P node ( var iable names , domain counts , index , dag ,

X )
110 CPT = var iab le names {1 , index } ;
111 Pa num = sum( dag ( : , index ) ) ;
112 i f Pa num == 0
113 prob = CPT;
114 e l s e i f Pa num == 1
115 Pa = f i n d ( dag ( : , index )==1) ;
116 Pa state = X(Pa) ;
117 prob = CPT( : , Pa s tate ) ;
118 e l s e i f Pa num == 2
119 a l l p a = f i n d ( dag ( : , index )==1) ;
120 Pa1 = a l l p a (1 ) ; Pa2 = a l l p a (2 ) ;
121 Pa state = (X(Pa1)−1)*( domain counts (Pa2 ) ) + X(Pa2) ;
122 prob = CPT( : , Pa s tate ) ;
123 end
124 P index = prob (X( index ) ) ;
125
126 end
127
128
129 % This sub−f unc t i on i s to generate one new s t a t e o f one node given the

p r o b a b i l i t y 'prob '
130 f unc t i on x = sample k ( prob )
131 u = rand ;
132 prob0 = [ 0 ; prob ] ;
133 f o r i = 1 : numel ( prob0 )
134 i f sum( prob0 ( 1 : i ) ) > u
135 x = i−1 ;
136 break
137 end
138 end
139 end

Instructions of running the codes of Mean Field Method This function is to compute the poste-
rior probability inference “Inference” and the MAP inference “MAP” of this project through Mean Field
Method. The input parameters include the absolute path ”path parameters” and ”path structure”of files of
“parameter.mat” and “structure.mat” should be modified according to location in your computer.

The Mean Field Method

1 % mean f i e l d method
2 f unc t i on [ In f e r ence , MAP] = mean f i e ld ( path parameters , p a t h s t ru c t u r e

)
3 % input :
4 % path parameters −− the path o f the parameter . mat f i l e ;
5 % pat h s t ru c t u r e −− the path o f the s t r u c t u r e . mat f i l e ;
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6 %output :
7 %I n f e r e n c e −− The p o s t e r i e r i n f e r e n c e p( Birth Asphyxia=yes |

CO2report : ` ` < 7.5 ' ' , LVHReport : yes , %X−rayReport : P l e t h o r i c )
8 % MAP −− The MAP i n f e r e n c e o f Disease
9 % load da ta s e t s

10 load ( path parameters ) ;
11 load ( pa th s t ru c t u r e ) ;
12 %% parameters
13 th r e s = 1e−7;
14 i ter num = 10000000;
15 total num = 20 ;
16 unknown num = 17 ;
17 unknown ind = [ 1 : 1 4 , 16 :17 , 2 0 ] ;
18 var iab le names = {BirthAsphyxia , Disease , Age , LVH, DuctFlow ,

CardiacMixing , LungParench , ...
19 LungFlow , Sick , HypDistrib , HypoxiaInO2 , CO2, ChestXray ,

Grunting , LVHreport , LowerBodyO2 , ...
20 RUQO2, CO2Report , XrayReport , GruntingReport } ;
21 %% i n i t i a l i z e
22 beta = ze ro s ( total num , 6) ;
23 e r r = ze ro s ( total num , 6) ;
24 a l l r e s u l t s = [ ] ;
25 f o r k = 1 : total num
26 f o r i = 1 : domain counts ( k )
27 beta (k , i ) = rand ;
28 end
29 beta (k , : ) = beta (k , : ) . / sum( beta (k , : ) ) ;
30 end
31 a l l r e s u l t s = ze ro s (1 , i ter num ) ;
32 f o r i t e r =1: i ter num
33 be ta o ld = beta ;
34 f o r i = 1 : total num %update the i t h node with the s t a t e o f

s
35 Eqi = ze ro s (1 , domain counts ( i ) ) ;
36 f o r s = 1 : domain counts ( i )
37 [ Eqi ( s ) ] = Eq i ( total num , dag , i , s ,

domain counts , beta , var iab le names ) ;
38 end
39 f o r k = 1 : domain counts ( i )
40 beta ( i , k ) = exp ( Eqi ( k ) ) /sum( exp ( Eqi ) ) ;
41 e r r ( i , k ) = norm( beta ( i , k ) − be ta o ld ( i , k ) ) ;
42 end
43 end
44 i f min (min ( e r r ) ) < th r e s
45 break
46 end
47 a l l r e s u l t s ( i t e r ) = beta (1 , 1 ) ;
48 i f mod( i t e r , 1) ==1
49 f p r i n t f ( 'The r e s u l t i s %.4 f \n' , beta (1 , 1 ) ) ;
50 end
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51 end
52 P l i n f = beta (1 , 1 )
53 MAP inference = f i n d ( beta ( 2 , : ) == max( beta ( 2 , : ) ) )
54 end
55
56 % This sub−f unc t i on i s to compute the expec ta t i on E q (X {− i }) (p(X, x i =

s , E) )
57 f unc t i on [ r e s u l t s ] = Eq i ( total num , dag , index , s ta te , domain counts ,

beta , var iab le names )
58 %input :
59 % i −− the node i ;
60 % s −− the s t a t e o f node i ;
61 % output :
62 % Eq −− E {q(\X {− i })} (\ l og (p(\X {− i } , x i , \E) )
63 r e s u l t s = 0 ;
64 f o r m = 1 : total num
65 a l l p a = f i n d ( dag ( : ,m)==1) ;
66 a l l n o d e = [ a l l p a ; m] ;
67 [ a l l x ] = l i s t a l l x ( index , s ta te , a l l node , domain counts , [ ] , [ ]

) ;
68 Eq = 0 ;
69 f o r i = 1 : s i z e ( a l l x , 1 )
70 X = a l l x ( i , : ) ;
71 %% compute q
72 q n o i = 1 ;
73 f o r n = 1 : numel ( a l l n o d e )
74 i f a l l n o d e (n) ˜= index && X(n) < domain counts (

a l l n o d e (n) )
75 q n o i = q n o i * beta ( a l l n o d e (n) , X(n) ) ;
76 e l s e i f a l l n o d e (n) ˜= index && X(n) == domain counts (

a l l n o d e (n) )
77 K = domain counts ( a l l n o d e (n) )−1;
78 q n o i = q n o i * (1−sum( beta ( a l l n o d e (n) , 1 :K ) ) ) ;
79 end
80 end
81 %% Pm
82 CPT = var iab le names {1 ,m} ;
83 Pa num = sum( dag ( : ,m) ) ;
84 i f Pa num == 0
85 prob = CPT;
86 e l s e i f Pa num == 1
87 Pa state = X(1) ;
88 prob = CPT( : , Pa s tate ) ;
89 e l s e i f Pa num == 2
90 Pa state = ( X(1)−1)*( domain counts ( a l l p a (2 ) ) ) + X(2)

;
91 prob = CPT( : , Pa s tate ) ;
92 end
93 Pm = prob (X( numel (X) ) ) ;
94 i f Pm ==0
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95 break
96 end
97 Eq = Eq + log (Pm) * q n o i ;
98 end
99 r e s u l t s = r e s u l t s + Eq ;

100 end
101 end
102
103 % This sub−f unc t i on i s to compute the p o s s i b l e x va lue s
104 %input :
105 % index −− The node i
106 % s t a t e −− The s t a t e o f node i
107 % a l l p a −− a l l the nodes that are cons ide r ed ;
108 % domian counts −− The number o f s t a t e s
109 % sample −− The one sample
110 % a l l x −− The c o l l e c t i o n o f samples
111 % output :
112 % a l l x −− a l l p o s s i b l e r e s u l t s
113 f unc t i on [ a l l x ] = l i s t a l l x ( index , s ta te , a l l p a , domain counts , sample

, a l l x )
114 i f s i z e ( sample , 2 ) == numel ( a l l p a )
115 a l l x =[ a l l x ; sample ] ;
116 r e turn
117 end
118 domain counts ( index ) = 1 ;
119 domain counts (15) = 1 ;
120 domain counts (18) = 1 ;
121 domain counts (19) = 1 ;
122 f o r j =1: domain counts ( a l l p a ( s i z e ( sample , 2 ) +1) )
123 i f a l l p a ( s i z e ( sample , 2 ) +1) == 15 | | a l l p a ( s i z e ( sample , 2 )

+1) == 18
124 sample = [ sample 1 ] ;
125 e l s e i f a l l p a ( s i z e ( sample , 2 ) +1) == 19
126 sample = [ sample 3 ] ;
127 e l s e i f a l l p a ( s i z e ( sample , 2 ) +1) == index
128 sample = [ sample s t a t e ] ;
129 e l s e
130 sample = [ sample j ] ;
131 end
132 i f s i z e ( sample , 2 ) <= numel ( a l l p a )
133 [ a l l x ] = l i s t a l l x ( index , s ta te , a l l p a , domain counts ,

sample , a l l x ) ;
134 sample ( end ) = [ ] ;
135 end
136 end
137 end
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