Real-time Faults Location in Power Grid through Deep Learmng

al

» Los Alamos

NATIONAL LABORATORY
EST.1943

Abstract

Faults location in power grid is crucial to im-
prove power system stability, but existing meth-

ods have limitations including high sampling rate,

offline, or require the complete system observabil-
ity. This paper proposes to locate multiple types
of faults through a convolutional neural network
(CNN) in real-time when the system is fully or
partially measured by phasor measurements units
(PMU). Moreover, a greedy PMU placement al-
corithm is designed to maximize the location ac-

curacy when limited buses are measured.

Background and Motivations

= More than 2000 PMUs are installed in the North

America, and algorithms based on PMU are
promising to automatically detect,

locate and
identify abnormal conditions in power grid;

« Locating faults in real time is crucial to improve
the power system stability and reliability [1];

« Impedance-based methods often assume loads are
static and are sensitive to topology change:;

« Traveling-wave-based method require high
sampling rate and accuracy of measurements;

« Artificial intelligent methods have some
limitations: High sampling rate like 2400 Hz [1]
DC model based [2], only for single fault and
complete observability required |2-3].

)

Feature Extraction

Given voltage PMU data of the power system with
n buses before and during fault UY, U’ € C" and
admittance matrix YV € C™ " before the fault, and

AU = UY — U’ we first define the feature vector
€ C"in (1):
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Figure 1: The I[EEE-68 bus system
Y =Y'AU (1)
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Interpretation of Feature ¢

Based on the substitution theory:
Y = A"+ Al (2)

« where AI" is a sparse vector with nonzero values
at the terminal buses of the faulted line; AT
denotes current variations:

m

« Thus v is closely related to fault locations.
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Example of Feature ¢

« When the line 5-6
in Figure 1 1s
faulted, the values
corresponding to
the bus 5 and 6 of

I 1y are relatively

larger than others.

Imaginary parts of the current variations

Figure 2: The imaginary parts of ¢

Our CNN Classifier and the Main Ideas
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Figure 3: CNN Structure

PMU Placement Algorithm

Given the number of measured buses m, the pro-
posed algorithm selects the ¢th bus having a large
degree d; and largely reducing loss function (3).

Greedy PMU Placement

- Input parameters: m, 5 =1
- Initialize : Sy = @ and the loss value | = oo
- for k=0,--- ., mdo
for bus2=1,--- ,ndo
Compute [; = ming [(O, {S; U i}) of (3)
end for
i* = arg mini(% + 1;), where d; is the degree

of bus ¢, 8 is a weight parameter.
if [ < [ then

Skl =
else
Siy1 = S
end if

- end for

- Return: §,,

(S, Ui} 1 =1

The Main Ideas of Our Method

- Extract feature vector 47 of the jth historical
PMU data with n lines and label them by the
faults locations;

« Train the CNN by inputting the extracted N
features ¢/, 3 =1,--- , N;

« CNN outputs the probabilities Q;;j 1=1,---.n
of jth data for the ith line;

« The line with the highest probability indicates

the tault location.

Algorithms Comparison

1
1(6,8) = min 5 Tyl log(0,8) + A6l
(3)
s.t. |S| <m (4)

where ©, S, A\, N denote the set of learned parame-
ters, the set of measured buses, regulation coefficient
and the total number of datasets, v/, ¢/ are the label
and estimated probability of the jth dataset.
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Figure 4: LAR of CNN based on different algorithms
« Three phase short circuit (TP), line to

eround(LG), double line to ground (DLG) and
line to line (LL) faults are tested in the IEE.
68-bus power system;

= The location accuracy rate (LAR) based on the
‘Proposed’ algorithm is higher than others.
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Figure 5: The LAR of CNN, MSVM, NN
« When the system is partially measured, the LAR

of CNN is higher than that of multi-class support
vector machine (MSVM) and NN.

Table 1: The ARC of CNN when < 15% buses are measured

Measured Ratio TP LG DLG LL
7% 1.32 1.48 1.92 1.56
10 % 1.38 1.28 1.66 1.54
15 % 1.38 1.23 1.57 1.54

» The lines are sorted according to their
probabilities from CNN and thus the Averaged
Rank of Correct (ARC) line is defined;

« The ARC, less than 2, indicates that the correct
is mostly within the lines of top-3 probability:.

Conclusions

The proposed method is able to locate faults with

a high accuracy when system is fully or partial

measured, and the proposed algorithm is effective
to improve LAR with limited buses measured.
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