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Background

Figure: Installation of PMUs in the North
America https://www.naspi.org/documents

Phase measurement units (PMU)
provide synchronized phasor
measurements at the sampling rate of
30 or 60 sample per second;

More than 2000 PMU are installed in
the North America.

PMU are generating large-scale of
datasets in the power grid;

Data-driven methods based on PMU
data are promising to automatically
locate and identify abnormal
conditions in power grid.
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Challenges and Opportunities

For the large-scale high dimensional PMU data, how to extract useful
information ?

How to connect the variations of data with the physical modeling to
monitor, adjust and optimize the current modeling ?

How to propose efficient and accurate algorithms based on the PMU
data to participate the closed-loop control?

How to reveal the correlations in the data to augment our understanding of
the system states?
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Low-dimensional Structure of PMU data

Figure: PMUs in Central NY Power Systems
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Figure: Singular values of the PMU data matrix

37 voltage/current phasors. 30 samples/second for 20 seconds. Form a large
matrix of 600 by 37.
Singular values decay significantly. Mostly close to zero. Singular values can
be approximated by a sparse vector.
Low-dimensionality also used in [Chen, Xie, Kumar 2013, Dahal, King,
Madani 2012] for dimensionality reduction.
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Motivations of Identifying Events

Fast event identification is important to prevent cascading failures and
enhance system security ;

The existing data-driven methods have some limitations:

– large dictionary size & complicated training: 6000 root patterns in a 21-bus
system [Wang W et al., 2014], several hidden Markov models are trained to
detect and identify events [Jiang H et al., 2014].

– off-line algorithms & long window size: [Song Y et al., 2015] employed an
off-line algorithm of 20-second data ;

– high sampling frequency: [Jiang H et al., 2014] utilized 1kHz sampling rate
based on frequency disturbance recorder;
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Problem Formulation and Feature Extraction

Problem: Given the PMU data M ∈ Rm×T of m buses in the time period
T , we want to identify events like line trip, generator trip, line fault.

Main Idea: Extract features and establish a dictionary;

Extract feature matrix Vk ∈ RT×k, k � m, k � T by singular value
decomposition (SVD) in (1);

M = UkΣkVk (1)

 kU

A short period of time T

m PMU channels
m TM 

Uk, Vk : span column and row subspaces;
Σk : the k largest singular values of M .
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Physical interpretation of feature matrix Vk

A linear model after an impulse input follows

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)

where x(t), y(t) are the deviation of state variable and measurements at time
t, u(t) is the input variable, and A,B,C are the state matrix, input matrix
and observation matrix

Let β†k = [λk, λ
2
k, · · · , λTk ], where λk are the kth eigenvalue of A;

Span(Vk) = Span(β) assume that in a short time u(t) ∼ 0

Various types of events excite distinctive eigenvalues thus Vk are different;

Vk can represent different dynamics after events.
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Our Approach: Event Identification through Dictionary
Identify an event by comparing the row subspace of the real-time
spatial-temporal PMU data blocks with a dictionary of subspaces obtained
from recorded PMU data with known event types.

M1 =

Mn1 =

...

M1 =

Mn2 =

...

M1 =

Mn3 =

...

... ... ...

Short Circuit Events

D=

Dictionary Atoms
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Line Trip Events Load Change Events
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Figure: Dictionary construction from historical datasets and real-time data identification through
subspace comparison
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Similarity of Subspaces

Subspace Angle [Mahdi S et al., 2014]

θ(Sl,Sk) = arccos(

√
‖B†kBl‖2F /min{k, l}). (2)

θ equals 90◦ if two subspaces are orthogonal to each other;

θ equals 0◦ if two subspaces are the same (l = k) or one is embedded in the
other (l 6= k).

A smaller θ indicates higher affinity of two subspaces.
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Experimental Results of ISO NE PMU data

Table: Minimum subspace angles between a test case and the dictionary atoms of three types of events in
recorded PMU data

Events
Dictionary

Load Change Fault Line Trip

Load Change 1 4.08◦ 16.91◦ 18.29◦

Load Change 2 3.12◦ 20.81◦ 14.39◦

Fault 1 24.95◦ 6.33◦ 23.86◦

Fault 2 8.93◦ 3.73◦ 15.76◦

Line Trip 1 7.25◦ 5.85◦ 3.93◦

Line Trip 2 11.20◦ 30.21◦ 4.27◦

The minimum subspace angle (bolded) indicates the type of the events;

32 events of three types are tested with 100 % identification accuracy rate.
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Motivations of Locating Faults

Locating faults in real time is crucial to improve the power system stability
and reliability;

Impedance-based methods often assume loads are static and are sensitive
to topology change;

Traveling-wave-based method require high sampling rate and accuracy of
measurements;

Artificial intelligent methods: some require high sampling rate like 2400 Hz
(Mehrdad 17), some are DC model based, some only for single type of
faults or single transmission line and complete observability of the system
required ( Guangyu 16).

11



Problem Formulation
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Figure: The line 5-6 is faulted in the IEEE 68-bus power system

Problem: When a line is faulted (marked as red cross), how to locate the
fault efficiently?
Challenges:

– The type of fault can be various, including symmetrical or asymmetrical fault;
– Various fault impedances cause voltage drop in different degree;

Our Approach:
– Extract location features;
– Classify by a convolutional neural network (CNN). 12



Feature Extraction

Given voltage PMU data of the power system with n buses before and during fault
U0, U ′ ∈ Cn and admittance matrix Y 0 ∈ Cn×n before the fault and
∆U = U0 − U ′, we define the feature vector ψ ∈ Cn in (3):

ψ = Y 0∆U (3)
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Figure: The imaginary parts of the feature vector ψ
after the line 5-6 is faulted

Physical Interpretation of ψ:
Based on the substitution theory,

ψ = ∆Iu + ∆I (4)

where ∆Iu is a sparse vector with
nonzero values only at the terminal
buses of the faulted line;
∆I denotes the current variations of
buses.
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Our CNN Classifier
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Figure: Understanding CNN

Input the extracted feature ψj and the label yj of the jth dataset;

CNN optimizes the parameters by minimizing a loss function, and then
outputs ȳji , the probability of the ith line for the jth dataset;

The line with the highest probability indicates the faulted line.
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Numerical Results
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Figure: The IEEE 68-bus Power System

Four types of faults, including three phase (TP), line to ground (LG), double
line to ground (DLG) and line to line (LL) faults, are simulated in the IEEE
68-bus power system;
More than 2300 datasets of various locations, different types and fault
impedances, and random load fluctuations are generated;
Data rate is 30 samples per second.
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Location Accuracy with Complete Measurements
Table: The LAR η ( %) of MSVM

Zf (p.u.) 0.05 0.01 0.001 0.0001
LAR of TP ( %) 100 100 100 100
LAR of LG ( %) 100 100 100 100

LAR of DLG ( %) 98.6 100 100 99.5
LAR of LL ( %) 98.6 99.6 93.5 94.6

Table: The LAR η ( %) of CNN or NN

Zf (p.u.) 0.05 0.01 0.001 0.0001
LAR of TP ( %) 100 100 100 100
LAR of LG ( %) 100 100 100 100

LAR of DLG ( %) 100 100 100 100
LAR of LL ( %) 100 100 100 100

The location accuracy rate (LAR)1 of Multi-class support vector machine
(MSVM), Neural Network(NN) and CNN are all more than 90% for most
events when the system is completely measured.

1defined as η = The number of faults correctly located
total number of faults 16



Location Accuracy with Partial Measurements
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Figure: The LAR of the CNN, MSVM, NN with different percentage of measured buses

When 15 % ∼ 30 % buses are measured, the LAR of CNN is higher than
that of MSVM and NN for different types of faults;
When at least 30 % buses are measured, the location accuracy of CNN can
be higher than 95%;
What if less than 15 % ?
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Performance When ≤ 15% Buses are Measured

Table: The ARC of CNN on different types of events with the ratio of measured buses less than 15%

Measured Ratio TP LG DLG LL
7 % 1.32 1.48 1.92 1.56

10 % 1.38 1.28 1.66 1.54
15 % 1.38 1.23 1.57 1.54

Define Averaged Rank of the Correct (ARC) line to indicate how many lines
that mostly include the correct lines;

The ARC, less than 3, when ≤ 15% ratios of buses are measured, indicates
that most correct lines are in the lines having the top-3 probability;

Moreover, the lines with high probability are mostly near the faulted line.
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Example: Line 5-6 is faulted
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Figure: The lines with the top-5 probability when only 5 buses are measured

Only 7% buses are measured;

The correct line 5-6 has the second highest probability;
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The Lines with Top-5 Probability
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Figure: The lines with the top-5 probability when only 5 buses are measured

The lines with the top-5 probability marked in red are in the neighborhood
of the faulted line 5-6;

This neighborhood property is not a special case but commonly exist in
most cases;

Why the lines with high probability show the neighborhood property? is it
coincidence or due to some magic of CNN?
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The essensity of the neighborhood property

It is verified that the neighborhood property exist even other classifier like
NN is applied;

The essential cause is due to the features we defined:

ψ = ∆Iu + ∆I (5)

For the kth ( k 6= i, j) entry ψk when the line i-j is faulted:

ψk = ∆Ik + ∆Iuk = ∆Ik (6)

= Σj∈Nk
Y 0
kj∆Uj (7)

where Y 0
kj denotes the admittance between bus k and j before the fault, and

Nk denotes the neighbor of the bus k.

Thus ψk denotes the sum of the total current variations in the neighborhood
of k.
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Greedy Algorithm of PMU Placement

The loss function is (1) is:

l′(Θ,S) = min
Θ

1

N
ΣNj=1Σni=1y

j
i log ȳji (Θ,S) + λ‖Θ‖2F

where Θ,S, λ,N denote the set of learned parameters, the set of measured buses,
regulation coefficient and the total number of datasets, yji , ȳ

j
i are the label and

estimated probability of the jth dataset.
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Performances Comparison of Different ALgorithms
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Figure: LAR of CNN based on different algorithms

The LAR of the four types of
faults are compared when about
15% buses are measured by
different algorithms;

The “2-hop Vertex Cover”
method is only based on the
graph connectivity and
“Random” method is to select
buses arbitrarily;

The proposed algorithm
achieves a better location
accuracy rate for different types
of faults.
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Conclusions & Future Work

A real time fault location method is proposed based on a CNN classifier;

This method can keep a high location accuracy when the system is fully or
partially measured;

Our CNN classifier achieves a higher LAR than that of the MSVM and NN
when the system is partially measured;

The lines with high probabilities can indicate the small area of the faulted
line;

The proposed PMU placement algorithm can improve the location accuracy
rate;

More sensitivity of our method will be tested in the future work.
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