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Motivations of Event ldentification

 Efficiently identifying large events
are beneficial to avoid blackout
and improve power system
stability and reliability;

 More than 2000 Phasor
measurement units (PMUs) have
been installed in the United
States;

| : - A number of PMU data motivate
g pecople to monitor and control
power system with data-driven

Fig. 1 The satellite photograph shows the blackout in 2003

https://www.snopes.com/fact-check/blackout-2/ m eth O d S
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Existing Approaches

* Recent development of event identification methods|[1-5]:

* Advantages:
o Mmodel-free, robust to model errors.
 Limitations:

o Single events or multiple events with long time intervals and
minor overlapping;

o Alarge number of training datasets;
o No clear physical interpretations;
o High training complexity.
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Challenges of Identifying Successive Events

(e

— —_
S =3
[\ (O8]
[
S
b
piry
IS
w S
=
IS
o
w

e Second Event
. @ s
I;-‘i 25 26
53
t 54 27
0
55

i

—
S
—_

—
T

Nel
O
T T

o o

Nel
o]

e

o

2
T

e
¥
N

The voltage magnitudes of buses (p.u.)

erator 1
Load
nsformer

e
o
A

<O

. . . . Gen
20 40 60 80 100 Tra
Time (0.033 second)

(a)
Fig. 3 (a) Line 17-43 tripped at 1 s followed by line 25-26 tripped event at 2 s in the IEEE 68-bus power system.

* The two successive events In (a) are almost independent,
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Challenges of Identifying Successive Events
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Fig. 4 (b) Generator at bus 4 tripped at 1 s followed by line 26-29 tripped at 2 s in the IEEE 68-bus power system.

* The two successive events In (a) are almost independent, but the
successive events in (b) are overlapping;

* Insufficient number of historical successive events for training;
« Goals
o Offline training of single events
@& . Online identification of overlapping successive events



Definition of Dominant Features

e Dominant Features:

o MI' =]y, ..,yr] is a data matrix of m PMU channels in T,
M] =~ U2V,
e« U,V.e C"™"x. =diag(oq,-,0,) are singular vectors and values.
o Since y; = Ay;_1 , the two data matrices in sequential windows:
Mi = AM; ™!
o Define the -eigenvalues of A and oy,:--,0, as the
dominant features.

 Classification:

o The extracted dominant features are input to a 2-layer CNN

classifier.
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Offline Training
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type of an event.

Fig. 5 Offline training on single events of Generator Trips (GTs), Line Trips (LTs),
and Three phase short circuit (TPs)
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Online Testing

Given the two successive events occurring at T1 and T2 respectively,
there are three steps to identify the type of second event:
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Fig. 5 Online testing of successive events through three components
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Online Testing

Given the two successive events occurring at T1 and T2 respectively,
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Numerical Results

Table 1.The Identification Accuracy Rate (IAR?) of 380 simulated datasets

IAR % LT + GT LT+ TP LT+LT GT+GT GT+TP TP +GT
CNN-F2 86.4 97.8 81.1 87.3 77.5 01.3

CNN-T3 63.8 65.3 80.5 63.1 26.5 85.8

« Simulated datasets are generated by PSS/E in the IEEE 68-bus
power system.

* 967 single events are employed to train the classifier, and the CNN
identifies 1136 successive events of different combinations as
shown in Table , where “LT+GT” denotes a line trip event is followed
by a generator trip event.

HAR is the ratio of the number of correctly classified events to the total number of events.
2CNN-F represents the CNN with dominant features as inputs.

SCNN-T represents the CNN with time series as inputs. 13



Performance with small training datasets
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Fig. 6 The IAR of CNN-F and CNN-T when patrtial training datasets are available

 The dominant features are robust to initial conditions, and the CNN-F
achieves a higher IAR with small training datasets.

 The IAR of CNN-T Is sensitive to the size of the training data.
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The Impact of Subtracting the First Event

Table 1. The performance comparison with and without subtracting the first event (A T=1s)

Classifier Process LT % GT % TP % Overall %

CNN-F NS 79.4 68.3 96.4 81.9
CNN-F SP 95.9 89.1 97.3 94.2
CNN-T NS 94.8 83.2 /8.4 85.1
CNN-T SP 73.2 62.4 /8.4 /1.5

* “Not Subtract (NS)” :using the data after the second event directly.

« “Subtract the Prediction (SP)” means using the residual data after
subtracting the first event.

« Subtracting the impact of the first event can enhance CNN-F’s
performance significantly.

e CNN-F Isrobust to iInaccuracies In the measurements.
ECURENT §



Conclusions

« Compact features, like the dominant eigenvalues of the state
matrix, are effective to characterize events and robust to initial
conditions.

« The proposed CNN classifier trained on single events is able
to identify successive events in real time.

 The CNN-F using the dominant features is robust to the
measurement inaccuracies and small training datasets.

* The proposed prediction-subtraction process can reduce the
Impacts of earlier events and enhance the identification
accuracy.

ECURENT
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