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1 Introduction
Given the datasets D, the distribution P underlying the D can be captured by a Bayes Network
{G,θ}. As both the structure G and the parameters θ need to be determined, the crucial points of
Bayes learning include the structure learning and parameter learning. Due to the availability of the
structure and the observed data, there are four types of Bayes learning. 1) “Parameter learning”
means to learn the parameters when the structure G is known; 2) “incomplete parameter learning”
means to learn the parameters if the data are partially observed and the structure G is known; 3)
if the structure G is not known and the data are fully observed, then the learning is defined as
“structure and parameter learning”; 4) the more challenging learning is the “incomplete structure
and parameter learning” when the structure is unknown and the data are not fully observed.

The most basic learning issue is the “parameter learning” given the complete observations D.
There are commonly two ways of generative learning methods: the maximum likelihood (ML) esti-
mation and the Bayes estimation. The ML method is to maximize the log likelihood of log(p(D|θ)),
and the Bayes estimation is to maximize the posterior log likelihood log(p(θ|D)), which actually
is equivalent to be log(p(D|θ))+ log(p(θ)). Obviously, the difference between these two methods
is that there is an extra prior distribution log(p(θ)) in the Bayes estimation method. It is found that
when the size of datasets is small, the influence of prior distribution will influence the parameter
learning results significantly, but if the datasets are large enough, the influence of the prior becomes
trivial, thus both the ML and Bayes may obtain the similar results. In addition, if the application
of the parameters are for the classification, the discriminative learning can be applied.

The “structure and parameter learning” is another fundamental learning to determine the topol-
ogy of a Bayes Network when the observations are completely provided. To determine whether
there is any links between two nodes, there are two main criteria. One is the score-based approach,
and the other is the independent test-based method. For the independence test based method, the
performance is not satisfying if the network is small or the datasets are not sufficient.

For the score-based method, the central idea is to define a score of the current structure G′,
search all possible way of changing the topology, and then check whether the score can be im-
proved after the modification. The definition of the score is basically to maximize the marginal
structure likelihood p(D|G). Due to various assumptions, there are various score, like the Bayesian
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Information Criterion (BIC), Bayesian Score, Akaike Information Criteriaon (AIC) are defined.
Then these scores are applied on different scenarios to determine the optimal structure. One sig-
nificant advantages of these score-based approach is that the score of the whole structure can be
decomposable, thus the structure can be modified locally.

Among the proposed scores, the BIC score is extensively applied, as this score balances the
model complexity and the closeness to the optimal solution and significantly improve the compu-
tation efficiency. The assumption of this score include that the prior distribution is uniform, the
datasets are sufficient, moreover, the structure based on this score is usually local optimal, thus is
influenced by different initial conditions. To implement the BIC score method, one feasible way
is the Hill Climbing learning algorithm based on the Heuristic search. This method can locally
modify the structure and check the BIC score afterward, the topology can only be changed if a
larger BIC score can be obtained. This algorithm is efficient but can only ensure the local optimal.

Therefore, the aim of this project is to learn the structure based on the BIC score method given
the training datasets. As one of the node representing the “target”, which determines the type of
the datasets, the type of each dataset can be determined by computing the maximum a posterior
inference of the target node. Thus in the testing stage, the type of the datasets can be determined
and the accuracy of testing will be obtained.

The remaining parts of the report are organized as follows: Section 2 describes and discusses
the theory of Bayesian learning, inference methods. Then Section 3 validates the theory by learning
the structure of the given training datasets, and the learned structures and classification accuracy
illustrates the feasibility of the BIC score method. The Section 4 summarizes the tasks and con-
cludes the results.

2 Theory and Analysis of Bayesian Learning and Inference

2.1 Bayesian Structure Learning Method
BN structure learning is to simultaneously learn the links among nodes and conditional probability
for the nodes. It is more challenging than CN parameter learning.

There are two major types of Bayesian structure learning method: one is score-based method,
and the other is independence-test based method. In this project we will implement one the the
first type of method: the Hill Climbing learning method (HCL).

This method is a greedy method that iteratively update the local structure of each node based
on the Bayesian Information Criterion (BIC) until convergence. Given the training datasets D =
{D1, · · · ,DM}, and the BN structure G of N nodes Dm = {xm

1 , · · · , xm
N }, the derivation of BIC is to

maximize the log structure likelihood logP(D|G). Notice that the parameters θ is unknown.

logP(D|G)=ΣM
m=1P(Dm|G) (1)

=ΣM
m=1

∫
P(Dm|θ,G)P(θ|G)dθ (2)

As the iterm
∫

P(Dm|θ,G)P(θ|G)dθ is complicated to compute, it is assumed that the P(Dm,θ|G)
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follows a Gaussian distribution,

P(Dm,θ|G)∼ 1
(2π|Σ|1/2)

e
(θ−θ0)TΣ−1(θ−θ0)

2 (3)

where Σ is the covariance matrix of θ.
then the Laplace Approximation method can estimate this item. According to the second-order

Taylor expression, we expand the logP(Dm,θ) at the mode θ0,

log(P(Dm,θ|G))≈ logP(Dm,θ0|G)+ (θ−θ0)
∂ logP(Dm,θ0|G)

∂θ
+ (θ−θ0)T ∂

2 logP(Dm,θ0|G)
2∂2θ

(θ−θ0)

(4)

As the mode θ0 satisfies that ∂ logP(Dm,θ|G)
∂θ

= 0, and take exponential function on both side of
(4), we have

(P(Dm,θ|G))≈ P(Dm,θ0|G)e
−1

2(θ−θ0)T A(θ−θ0) (5)

where Am =−∂2 logP(Dm,θ0|G)
2∂2θ

.
let

q(Dm,θ)= P(Dm,θ0|G)e
−1

2(θ−θ0)T Am(θ−θ0)

approximate logP(Dm,θ|G).

P(D|G)=ΠM
m=1P(Dm|G) (6)

=ΠM
m=1

∫
P(Dm,θ|G)dθ (7)

≈ΠM
m=1

∫
P(Dm,θ0|G)e

−1
2(θ−θ0)T Am(θ−θ0) dθ (8)

=ΠM
m=1P(Dm,θ0|G)(2π)d/2|Am|− 1

2 (9)
(10)

where d is the dimension of the θ.

logP(D|G)=ΣM
m=1 logP(Dm|θ0,G)+ logP(θ0|G)+ d

2
log(2π)− 1

2
ΣM

m=1 log |Am| (11)

Assume there are a large number of datasets, M goes to ∞, then ΣM
m=1|Am| = d log M, and

assume the prior θ follows the uniform distribution, thus

θ∗ =max
θ

logP(D|G) (12)

≈max
θ

(ΣM
m=1 logP(Dm|θ0,G)+ logP(θ0|G)+ d

2
log(2π)− 1

2
ΣM

m=1|Am|) (13)

≈max
θ

(ΣM
m=1 logP(Dm|θ0,G)− d

2
log M (14)

3



Therefore, the SBIC(G(Xn)) is defined as

SBIC(G)=ΣM
m=1 logP(Dm|θ̄,G)− d(G)

2
log M (15)

where θ̄ is the optimal parameters for the structure G, d(G) is the number of independent parame-
ters of the network G.

Applying the Bayes Chain rule to the log likelihood term of (15), the equation becomes

SBIC(G)=ΣM
m=1Σ

N
n=1 logP(X m

n |θ̄n,G(Xn))−ΣN
n=1

d(G(Xn))
2

log M (16)

=ΣN
n=1Σ

M
m=1 log(P(X m

n |θ̄n,G(Xn))− d(G(Xn))
2

log M (17)

=ΣN
n=1SBIC(G(Xn)) (18)

where G(Xn) denotes the network for the nth network consisting the node Xn and its parents,
d(G(Xn)) denotes the number of links in G(Xn), SBIC(G(Xn)) denotes the BIC score the network
for the nth node, and d(G(Xn)) denotes the number of independent parameters, i.e., if the node has
K states and J configurations, then d(G(Xn))= (K −1)J.

Plug (6) into (1), then we have The procedures are summarized in the Algorithm 1.

Algorithm 1 The Hill Climbing learning Method
1: Input: the training datasets D and the initialized BN structure G and the initial BIC.
2: For the ith node (i = 1, · · · , N), refine the structure of BN with the training data by one opera-

tion such as removing or adding or changing link direction of this node at one time, and obtain
all possible new networks G j, j = 1, · · · , in.

3: Compute the maximum BIC score of the structure G j∗ among all the G j. If this new BIC
is larger than the existing BIC, then save the structure G = G j∗ , otherwise keep the existing
structure G.

4: Repeat the steps from 2-4 until furture changes of G j∗ cannot improve the BIC score.
5: Output: G and BIC.

Notice that in this project, the initialized structure G is given, and the operations are limited to
deleting and reversing the directions.

2.2 Discussion of hill-climbing learning algorithm
This method is based on the BIC score. The BIC score is to formulated by three assumptions
(1)(P(Dm,θ|G)) follows the Gaussian distribution, (2) the BN parameters P(θ|G) follows the uni-
form prior, (3) there are sufficiently large number of datasets that M −→∞. Thus if there are not
enough datasets, or the parameters have some special prior rather than uniformly distributed, the
BIC score is not a suitable criterion to establish the structure.

Moreover, this greedy algorithm can practically produce satisfactory structure efficiently, but
the these results are usually influenced by different initializations. There is no theoretical guar-
antees of the optimal structure. Various techniques have been proposed to reach a better local
optimal, such as Random Restart, TABU search, and Simulated Annealing method.
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2.3 Bayesian Parameter Learning
There are three methods to learn the BN parameters. One is maximize the log likelihood (ML)
without considering the prior distribution of θ, the second is the Bayesian BN learning, which
assume the Dirichlet or Gaussian, or L1-norm prior, and the third method is the discriminative
learning, which is better for classification problem. The first two methods are decomposable but
the third one is not. Here The ML method is applied to estimate the parameters.

Let the BN parameter set θ = {θ1, · · · ,θN } corresponding to the nodes. These parameters can be
learned by the MLE method:

θ∗ = argmax
θ

P(D|θ) (19)

= argmax
θ

log(P(D|θ)) (20)

= argmax
θ

LL(D : θ) (21)

= argmax
θ
ΣM

m=1 log(P(Dm|θ)) (22)

= argmax
θ
ΣM

m=1Σ
N
n=1 log(P(X m

n |π(X m
n ))) (23)

where π(X m
n ) is the parents of X m

n .
Therefore, we can learn each parameter θn independently.

θ∗n = argmax
θ

LL(D : θn) (24)

= argmax
θ
ΣM

m=1 log(P(X m
n |π(X m

n ))) (25)

(26)

For the discrete BN, the node Xn ∈ {1,2, · · · ,K} has K states. Assume there are J configurations
of the parents of node Xn, and the parameter for the parameter of configuration j when node
Xn = k is θn jk, and these configurations are independent, then we can further derive the simplify
P(X m

n |π(X m
n )) for node Xn,

P(X m
n |π(X m

n ))=ΠJ
j=1θ

1(π(X m
n )= j)

n j (27)

=ΠJ
j=1Π

K−1
k=1 θ

1(X m
n =k,π(X m

n )= j)
n jk (1−ΣK−1

k=1 θn jk)1(X
m
n =K ,π(X m

n )= j) (28)

Plug (27) into (24), then we obtain

θ∗n = argmax
θ
ΣM

m=1 log(ΠJ
j=1Π

K−1
k=1 θ

1(X m
n =k,π(X m

n )= j)
n jk (1−ΣK−1

k=1 θn jk)1(X
m
n =K ,π(X m

n )= j)) (29)

= argmax
θ
ΣM

m=1Σ
J
j=1Σ

K−1
k=1 θn jk1(X m

n = k,π(X m
n )= j) log(θn jk) (30)

+ 1(X m
n = K ,π(X m

n )= j) log(1−ΣK−1
k=1 θn jk)) (31)

= argmax
θ

Nn jk log(θn jk)+Nn jK log(1−ΣK−1
k=1 θn jk)) (32)
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where Nn jk is the total number of node Xn = k,π(X m
n = j) of the training data.

According to the first order optimal condition, θ∗n satisfy that ∂(LL(D:θn))
∂θn

= 0, then

θ∗n = Nn jk

ΣK
l=1Nn jl

(33)

2.4 Discussion of MLE parameter leanring
This project is a classification problem, the discriminative learning may have better performance,
but as required by ML method, here we only show the results of ML method. Since ML method is
decomposable, the implementation is much easier.

2.5 Bayesian MAP inference for classification
When the 10 features are given (like the test dataset 1) and the first node is the target, the classifi-
cation issue becomes to deterministic and is P(X1|X2, · · · , X11) directed from the table CPT of the
node 1. Let the true label of the ith target be xi while the predicted by the MAP inference be x̄1.

x̄1 = argmax
X1

P(X1|X2, · · · , X11) (34)

Thus the classification accuracy is defined by ηi, i = 1,2, where ηi denotes the classification accu-
racy for the Test data i.

η= The number of corrected classified
Total test samples

where “The number of corrected classified” denotes the number of testing datasets that xi = x̄i.
When only partial features are given, the Gibbs sampling method is applied to estimate the

states of the unknown features and then obtain the MAP inference of the target. For the dataset 2,
the classification is equivalent to obtain the inference

x̄1 = argmax
X1

P(X1|X2, · · · , X6) (35)

Although there are many methods can be employed to implement the inference, include logic
sampling, weighted logic sampling , belief propagation and variable elimination, here the Gibbs
sampling is selected due to the accuracy guarantees.
The Gibbs sampling
Notice that the transition model p(X j|xi

− j,e) satisfies

p(X j|xi
− j,e)= p(X j|MB(X j)) (36)

= p(X j|π(X j))Πk
i=1 p(Yi|π(Yi))

Σx j p(x j|π(x j))Πk
i=1 p(Yi|π(Yi))

(37)

where π(X ) denotes the parents of X , Yi is the ith child of X j’s kth children.
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Algorithm 2 The Single Chain Gibbs Sampling Method
1: Input: burn in period t, skip steps k, and iteration times N.
2: Initialize all the unknown nodes X = {X1, X7, · · · , X11} by some random binary numbers ac-

cording to their total number of states, and known evidence are e= X2, · · · , X6. Let n = 0;
3: for i = 1, · · · , N do
4: Random pick the jth state of the unknown states;
5: Update the value of the state X j by obtaining the sample xi+1

j following the distribution
p(X j|xi

− j,e)= p(X j|MB(X j)) of (36);
6: while other states are kept the same xi+1

k = xi
k,k 6= j;

7: Form a sample of xi+1;
8: if i = t+nk then
9: Return the sample xt+nk . Collecting Sampling Results

10: n = n+1;
11: Output: x̄i1 = argmaxX1 P(X1|X2, · · · , X6)

3 Experimental Results

3.1 Datasets

Fig. 1: The initialized BN

Database of baseball players and play statistics. Features are statistics of baseball players from
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different aspects and they have been quantified into binary values 0 or 1. Target is the voting for
hall of fame. It has three values: 0, 1, and 2.

Variables Target (“Hall of fame”):0,1,2
10 features are binary states (0 or 1)
Feature 1: “number of seasons” = 0, 1
Feature 2: “at bats” = 0, 1
Feature 3: “runs” = 0, 1
Feature 4: “triples” = 0, 1
Feature 5: “Home runs” = 0, 1
Feature 6: “RBIs”=0, 1
Feature 7: “strikeouts” = 0, 1
Feature 8: “Batting average” = 0, 1
Feature 9: “slugging pct” = 0, 1
Feature 10: “fielding average” = 0, 1
The data consists of 900 training samples, 150 samples for testing data 1 and another 150 samples
for testing data 2. The data and the readme file can be obtained from the link below.
https://www.dropbox.com/sh/9kpz7xwwdehmium/AADauJgL-tY3n7-83ZgbmLj4a?dl=0

3.2 Tasks
Perform the following tasks:

• Implement the hill climbing method to learn the BN structure. Display the learnt BN struc-
ture

• Implement the ML method to learn the BN parameters

• Perform MAP inference to determine the most likely class value for the target node for the
given testing data. The testing data consists of two sets: test data 1 and test data 2. Test data
1 contains 150 samples with complete feature values for each sample. Test data 2 contains
another 150 samples with feature values for only the first five features. Show the average
classification accuracy for each class for both testing datasets.

3.3 The BN Structure
The process of changing the structure is tracked as follows:
The BIC is -3070.2507 After delete link 2 of the node 1
The BIC is -2990.4065 After delete link 5 of the node 1
The BIC is -2934.5514 After reverse link 5 of the node 1
The BIC is -2918.8662 After delete link 1 of the node 2
The BIC is -2899.9634 After reverse link 1 of the node 2
The BIC is -2888.1257 After delete link 5 of the node 3
The BIC is -2886.8475 After reverse link 5 of the node 3
The BIC is -2869.4763 After reverse link 3 of the node 4
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Fig. 2: The initialized and the optimal BN Graph

The BIC is -2864.6991 After reverse link 11 of the node 5
The BIC is -2864.6991 After reverse link 8 of the node 6
The BIC is -2854.9109 After reverse link 8 of the node 7
The BIC is -2850.9231 After reverse link 10 of the node 9
The BIC is -2848.3038 After delete link 1 of the node 10
The BIC is -2839.6894 After reverse link 1 of the node 10
The BIC is -2839.6894 After 1 iterations
The BIC is -2839.3193 After delete link 2 of the node 1
The BIC is -2835.5462 After delete link 9 of the node 1
The BIC is -2815.1991 After reverse link 7 of the node 2
The BIC is -2815.1991

3.4 The final and inital BIC scores

Table 1: The BIC scores

State SBIC

Initial -3085.9
Final -2815.2

3.5 Classification accuracy
To classify the second datasets, the Gibbs Sampling method is applied. The sample number is
set to be 5000, the burn-in period is 1000, the skip time is 100 and the single Markov Chain is
employed to generate samples. In Table 2, ηi, i = 1,2 denotes the classication accuracy for the ith
testing datasets.
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Table 2: The Classification Accuracy

State η1 % η2 %
Initial Graph 89.33 91.33
Final Graph 89.33 90.67

Discussion of the Results The results of ηi, i = 1,2 are interesting since the optimal graph does
not increase the classification accuracy. When looking into the reasons, it is found that the param-
eters learned by maximizing the log likelihood logP(D|θ) are not optimal for classification.

θ∗ = argmax
θ
ΣM

m=1 log(P(Dm|θ)) (38)

= argmax
θ
ΣM

m=1 log(P(X m
1 , · · · , X m

n |θ)) (39)

The θ∗ is learned to maximize the joint probability but what we really care about classification is
the conditional probability P(X m

1 |X m
2 , · · · , X m

n |θ), where X m
1 is the target for the mth dataset.

To reach a better classification performance, the optimal parameters θ should be learned by
maximizing the conditional likelihood instead of the joint likelihood of (38). Thus for classification
problem, the optimal parameters for classification should be learned by

θ∗ = argmax
θ
ΣM

m=1 log(P(X m
1 |X m

2 , · · · , X m
n ,θ)) (40)

The issue of computing the parameters based on (40) is that this equation is not decomposable in
terms of n nodes, thus the computational complexity increases when the nodes are many.

3.6 The BN Structure with another initialization
The new initialization is shown in the left graph of the Fig. 3. We can observe that the optimal
graph on the right of Fig. 3 is different from that of Fig. 2. The difference between the initial graph
in Fig. 3 with that Fig. 2 is that more connections are added to the initial graph. The intuition why
this initial graph may obtain a higher BIC is that in this project only deletion and reverse operations
are allowed, thus there is no possibility to add more links, therefore, if there are more links in the
initial graph, there are more possibility to search a better graph.

3.7 The BIC scores accuracy with another initialization
When try a different initialization, the optimal graph can be various as shown in Fig. 3, and the
BIC score shown in Table 3 can be improved from -2801.8 to -2736.3. The classification is also
computed and the η1 = 90.67%, which is higher than the 89.33% in the Table 1 with the original
initialization.
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Fig. 3: The initialized and the optimal BN Graph with another initialization

Table 3: The BIC scores with another initialization

State SBIC

Initial -3247.1
Final -2736.3

Table 4: The Classification Accuracy

State η1 % η2 %
Initial Graph 89.33 91.33
Final Graph 90.67 92.00

3.8 Classification accuracy with another initialization
The classification results are shown in Table 4. The ηi of the Final Graph has a better classification
accuracy rate than that of the Initial Graph for the first and the second testing datasets. The η1 =
90.67 of the final graph is better than that of the final graph with the original initialization in Table
2, but the η2 in Table 4 is no better than that in Table 2. Thus a high BIC score cannot ensure the
classification accuracy rate is always better on the testing datasets.

4 Conclusions
1. A summary of the tasks:

• The BN structures are learned by the hill-climbing algorithm;

• The parameters of the BN are learned by maximizing likelihood;
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• The two testing datasets are classified by the MAP inference method after approximat-
ing the posterior probability through Gibbs sampling method;

• All the above tasks are performed on another BN structure learned by a different ini-
tialization. This different BN structure achieves a higher BIC score.

• The theoretical analysis of the structure and parameter learning methods are described,
and the experimental results are analyzed.

2. The pluses and minuses of BN classifiers v.s. deterministic classifiers:

• The pluses of BN classifiers include 1) the BN classifiers output the probability of
each class instead of the type simply. The probability provides the confidence of the
classification results. For example, with probability of 99% being the “class 1” has
more confidence than with probability of 51% being the “class 1”, although the final
output types for these two conditions are both “class 1”. 2) BN classifiers give the user
the opportunites to add the prior knowledge to the classifiers rather than simply relying
on the data. The prior knowledge is significant especially when the training datasets
have a small size.

• The minuses of BN classifiers: 1) the main issue is that the structure learnt by BN
method can achieve a high BIC score or maximum likelihood score but may have a
poor classification performance. Thus the classification performance of BN may not be
better than the deterministic method. 2) When more nodes are included into the BN,
the complexity of modeling and computing inference is increased significantly, which
rises up the computation and storage cost.

3. Issues discovered: (1) although the hill-climbing learning can ensure that the final structure
to achieve a high BIC score, the performance of classification of the testing datasets is not
guaranteed to be optimal.

For example, if only allow changing the links of each node’s parents instead of all the links,
another graph G′ with the local optimal BIC -2806 is obtained, which is no better than the
optimal solution in the Table 1, but the η2 = 92.67 using the G′, which is higher than the
90.67 in Table 2. Therefore, a high BIC score cannot ensure a high classification accuracy
rate.

4. Learned: Although the theory of BIC is simple, there are many conditions need to be con-
sidered when implementing this method for the practical issue. For example, whether the
training datasets are large enough, whether the changing of the structure is under the graph
constraint, and what if there are no samples in the training datasets corresponding to certain
configurations, thus more boundary or abnormal detection should be considered.
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