Homework 3: application of block coordinate update method

Wenting Li liwl4@rpi.edu
April 18,2018

1. Nonnegative matrix factorization

The nonnegative matrix factorization (NMF) is to find two nonnegative matrices W € R™*" H € R™*"
such that their product approximates a given nonnegative matrix X € R™*". The model is based on
Gaussian noise.

1
minz [WH” = X|[},stW € R H € Ry [Willa <15 =1, . (1)

Three solvers are developed as follows.

1.1 Projected Gradient (PG)

There are two steps of the projected gradient algorithm to update each variable. Let f(W,H) =
SIWHT — X||%. The first step is to compute the gradient descent of each variable without considering
their constrains, and the second step is to project the results of the first step to the feasible region. Specifi-
cally, we update W*+1 H**1 through the following rules:

W = Py (WF — oV f(WF, HY)))
H*' = max((H* — oV f(WF, H")),0) 3)
Vwf(WkE H*Y = (WHT — X)H (4)
Vuf(WHHY)) = (WHT — X)TW (5)
W ={W|W e R [Will2 <1,j=1,---,r (6)

z ifzeW
Pw(z) = {”% itz ¢ W (7
(8

Since the Lipschitz constant L can be computed, we can set the step size o < % and L is the spectrum
norm of Hessian matrix of f(W*, H*). Specifically, the step size is « < 1/L = 1/||V2f(W*, H*)|.,
where

s ppt gy | HECGHET 2HEW)T X7
\Y% f(W , H) = [QWk<Hk)T X (Wk)ka)
Notice that actually from the experimental testings we found that if we consider variable W* and H*
respectively and set the step size of W is o, < 1/L,, = 1/||VZ, f(WF, H?)||y = 1/||H*(H*)T ||, while the
step size of H is ay, < 1/||V% f(WF, H®)||o = 1/||(W*)TW¥||5, and update the step size for each iteration,
the optimization problem can also converge fast, as shown in Figure 1, thus we did not compute the huge
Hessian matrix but applied o, o, instead.

The implementation of the projecting the matrix W to the WV space, we follow the (10). Let W+ =
max(WFk — ofVy, f(W*, H*),0), denoting that the normalization is only implemented only if the column
of W* is not in the unit circle, then we have

W = Py, (WF — oV f(WF, HY)) (10)
W+
B max(W+, 1) (b

where the division is the elementmize operator.
The initialization Wy, Hj is implemented by some random numbers, and the maximum iteration is M,
rank r should be selected based on the dataset.

Algorithm 1 PG
1: Given parameters M, X, r
2: Imitialization: W,, Hy, o, oy,
3: fork=0,1,2,--- .M do
4 Set v, = 1/||H*(H*)T |5,
s.an =1/ (WHTWE
6
7
8

Update Wk = %mjﬂ), where W+ = max(W* — oV, f(W* HF),0)

Update H**! = max((H* — a, Vi f(W*, H¥)),0)
. return WFt1 gk+1

1.2 Alternating Minimization (AltMin1)

As function f(W, H) is continuous and bounded in the feasible region, we know that the solution
{W* H*} generated by the two block coordinate descent algorithm or the AltMin is the stationary point
of the problem (1). Thus we can find the stationary point by solving two sub-problem (12), (13) at each
iteration. We applied cvx to solve each sub optimization problem in algorithm 2.

The W, H sub problems are following,

1
W = argmin o |W/(H")" = X[}, stW € RP [Wills < 1,5 =1, . (12)
1
HE = argml}nﬁHWkHHT — XH%,S.LH € errxr (13)
Algorithm 2 AltMin

1: Given parameters M, X, r

2: Initialization: W, H,

3: fork=0,1,2,--- .M do

4: Update W*+! = argminy 5 |W(H*)T — X |7, stW € R [|[Wylla < 1,5 =1,--- 7
5 Update H"! = argming 5 |W*H” — X||3,s.t.H € RV

6

. return Wh+1 fk+1

1.3 Alternating Proximal Gradient (APG)

The alternating proximal gardient algorithm is similar to PG, but the only difference is that when update
the matrix H**1 we apply the W**! instead of W*, please see the details in algorithm 3.

There are two steps of the projected gradient algorithm to update each variable. Let f(W,H) =
SIWH” — X||%. The first step is to compute the gradient descent of each variable without considering
their constrains, and the second step is to project the results of the first step to the feasible region. Specifi-
cally, we update W*+1 H**1 through the following rules:

WHEH = P, (WP — oV f(WF, HY)) (14)
H* = max((H* — of Vg f(WFT, HFY)), 0) (15)
Vw f(WF HY) = (WHH"T - X)H* (16)
VHf(Wk, Hk)) — (Wk+1(Hk)T - X)TWk+1 (17)
W={W[W e R Wil <1,j=1,---,r (18)
T ifxeW
Pw(z) = {”_ ifr ¢ W (19)
(20)

The initialization Wy, Hy is implemented by some random numbers, and the maximum iteration is M,
rank r should be selected based on the dataset.

Algorithm 3 APG
1: Given parameters M, X, r
2: Imitialization: Wy, Hy, o, ay,
3: fork=0,1,2,--- ,M do
4 Set v, = 1/||H¥(H*)T |5,
5. Update Whtt = V7
6
7
8

w7 D)+ Where W+ = max(W* — o*Vy, f(WE, H¥) 0)
ap = 1/[[(WHHTWE,
Update H**! = max((H* — o, Vg f(WHtE, HY)), 0)

. return W+ i+t

2. Comparison of the three solvers

In order to compare these three solvers, we solve the NMF problem through the ‘Swimmer’ dataset.
We set the maximum iteration to be 500, rank r = 17, and compared the objective values of these three
solvers in terms of iterations on the left of Figure 1. Here iteration means to finish updating both W and
H. The running time of these three solvers are 3.3 seconds, 3.25 seconds and 40734 seconds. In fact, the
long running time of AltMin is due to the package of CVX.

We can observe that the AltMin algorithm has reached the optimal solution after 100 iterations while the
other two algorithms are much slower, but for each iteration the AltMin solver needs many steps to solve
the sub problem while the other two solvers only run one step. Actually after 500 iterations, the PG and
APG reach their optimal solution. By comparing PG and APG, as shown on the right of the Figure 1, the
APG converges faster than PG since this algorithm update /7 based on the new W at each iteration.

2.2.2 Visualize the columns of W/

After solving the problem, we can visualize the learned parameter matrix W column by column. The
17 columns of W are reshaped into a 32 by 32 matrix and are showed as images in Figure 2. These are

3

x10° x10°

8 ‘ 5 ‘ ‘ ‘
--=-PGD -—-PGD
1 — APG — APG
-4~ AltMin 4
6 - 4
3 3
=] =]
© o 3
> >
g4 g
o 227
o <)
o) o
l .

100 200 300 400 500 100 200 300 400 500
Iterations Iterations

Figure 1: The objective values in terms of iteration k

the first 10 columns of V. As we can observe that the columns of W reflect the features of the input data,
which are the limbs of the swimmers.

3.Robust PCA

Let X be composed of a spase matrix S and a low rank matrix L. The robust PCA to find S and L, given
X. The problem can be formed as (21)

min| || + Al S|l s.tL+ 8 = X (21)

In order to use the alternating minimization algorithm, we can relax the (21) to (22).
winl| L.+ AIS]h + 5L+ S — X[} 6> 0 2)
(23)

Then we can solve this problem by two algorithms: proximal gradient descent and alternating mini-
mization algorithms as follow.

3.1 Proximal Gradient Descent(PGD)

Before explaining the sub-problem of L, we introduce the soft-thresholding operator S, [R1] and a
useful theory together with the proof. Given a matrix X € R™*™ with a rank r, we have the singular value
decomposition (SVD) of X in (24), and then the soft-thresholding operator S, on matrix X is defined in
(26).

X =UsV* (24)
S:(X) = US(x)V* (26)
S:(¥) =diag({0; — 7})1 <i<r (27)

where U € R™*", V € R" " are orthonormal matrices, * denotes the conjugate transpose and the singular
value J; are positive, {0 — 7}, means the positive set of {§ — 7}Vi.

Claim 1: The optimal solution of the problem 7| X ||, + ;|| X — Y% is S, (Y).

4

Proof. As the function || X||, + 3||X — Y||% is convex, the optimal solution is unique and we need to show
the X = S.(Y) is the solution. B
By the first order optimal condition, we prove the optimal solution X should satisfy that

0c(X-Y)+70|X]. (28)
Let the SVDof Y be Y = UOZOVQ* + U2, V)", where the singular values of X, are less or equal to 7
and that of ¥ are higher than 7, and X = S, (Y) = Uy(Zo — 71)+V; Then we have
_ 1
Y — X = T(U()VE)* + W()), WO = ;(UlZlVf) (29)

thus UgW =0, WV, = 0, ||W||2 < 1. As we know the subgradient of 0| X||. should satisfy
DX = {UV* + W UW =0, WV =0, [W]|, < 1} (30)

According to the definition of (30), we have Uy Vi + Wy € 9||X||., thus Y — X — 9|| X ||, = 0, and then
optimal condition can be satisfied. The X = S, (Y') is the optimal solution. [

Based on the claim 1, we can obtain the closed-form solution of the proximal gradient descent method at
each iteration, we update S**! and L¥*! simultaneously by the two optimization problems. As the Lipschitz
constant equals 23 (the spectrum norm of the Hessian matrix of f(L*, S*) is 23) , we can set the step size
tobe a < 3. Let f(LF,S%) = §||L + S — X||}, define Y = LF — oV f(L*, S*) = 1LF + (X — S%),
and SVD of Y* = UXV*. From the expression of Y'*, we can understand that Y'* is one point between the
previous variable L* and the its gradient value X — S*.

Lk+1 = PIOX%”L”*(L i Yk) (31)
1 1

:arglen%HLH*%—ﬁHL—YkH% (32)

= Si(Y’“) (33)

= US%(E)V* (34)

The solution of (33) holds due to the Claim 1. Then we update S sub-problem similarly. Let Z¥ =
Sk — %st([/k, SF)y =35k + L{(X — LF)

ShHL — PrOX%HSHI(S —Z" (35)
A 1

:amgmsmﬁHSHl+EHS—Z’“H?p (36)

= sﬁ(z’f) (37)

where the definition of S)(.X) denotes to take the operator of S, (x) for each element = of X, where

r—X ifz>A
Siz)=qz+ X ifz< -\ (38)

0 otherwise

Algorithm 4 PGD
1: Given parameters X, 5 = 0.01, \, M, Bqz = 10°
2: Imitialization: L, S
3: fork=0,1,2,--- .M do
We fixed the step size o = % such that
Ykt = %Lk + %(X — S¥)
Ykl = Uxy*
7M1 = 38k 4+ (X — LF)
Update LFF! = U&%(E)V*
Update S*! = S%(Zk“)
10: Update **! = min(Baz, 1.18%)
11: return LF! Sk+1

L e B

3.2 ALternating minimization (AltMin2)

For the alternating minimization algorithm, we need to solver two sub problems at each iteration. The
one sub problem is to update the L by solving the (39) and the other sub problem is to update S by solving
the (40). The update rule is still to follow (33) with fixing S* and (35) with fixing L*. For each sub problem,
we choose the fixed step size o < nLB’ 1 > 1 since the Lipschitz constant for L and S is 3 respectively.

L :argmLinHLH*+gHLk—l—Sk—XH% (39)

Skt :argmbin)\HSHl—i—gHLkH—FSk—XH%aﬁ >0 (40)

Algorithm 5 Alternating minimization (AltMin2)
Given parameters X, 5° = 0.01, A\, M, 1 = 2, Brnae = 10°
2: Imitialization: L, S
for k=0,1,2,--- ,M do
4: We fixed the step size o = 77%6’
while not converge do
6: Vi = I8 — L(LF+ S* — X))
Y =XV
Update LFH! = US.(Z)V*

*®

while not converge do
10: Zk+1 — Sk . %(Lk+1 + Sk o X)
Update S*! = &, (ZF1)

np
12: Update £+ = min(B,4e, 1.18%)

return LF! SF+1

The inner loop can also be computed by other solvers like cvx but we applied the approximation gradient
descent to update L and .S separately.

3.2.1 parameter adjustment

The two parameters A, S have highly influence on the rank of L and the step size. When [is fixed,
a smaller A\ will push the rank of L to be lower, and otherwise the rank of L will be higher. As we want

6

to separate the background from the image, we want the rank of L to be lower and thus the A\ should be
small. When fixing the A, a large [will cause the step size to be small and a higher penalty on the constrain
L + S = X. In order to have results within this feasible region, 5 should be large. Thus in order to ensure
that the results are in the feasible region and the rank of L is low, we increase the [at each iteration from
a small number, in this way, a small 3 push the rank of matrix L to be small and gradually a larger 3
constrains the L and S' to the feasible region, otherwise a too large or too small fixed 3 can not ensure the
separation of the low rank matrix and the sparse matrix.

4 Comparison of PGD and AltMin2

By testing on the Escalator video Dataset, we compared the performances of the two solvers. The
parameter for these two solvers are as following: maximum iteration is 200, n = 2, A = 0.005, /3 changes
from 0.01 to 10° by increasing 1.1 times at each iteration.

4.1 Convergent rate comparison

The objective values of these two solvers are shown in Figure 3. The running time of 200 iterations for
proximal gradient descent is 67.22 seconds , and that of Altmin is 832.36 seconds. From Figure 3, although
the objective values of alternating minimization solver converges slightly faster, the objective values of the
Alternating minimization solver at each iteration are computed by solving two sub optimal problems and
this process often needs many iterations. Thus the total running time of alternating minimization solver is
much larger than that of Proximal gradient descent method.

4.2 The images of the optimal L and S

By image playing the input datasets, we can observe that the datasets are the images of a period of
video. For these images, most of the items are static, such as the ground and the time symbols, but only
small parts are changing, for example, the people and the stairs of the elevator are moving. In this way, we
can imply that the part of the data denoting the static items have a low rank while those representing the
moving iterms are sparse. Therefore, by solving the robust PCA problem on this dataset, the low rank part
L can be separated as the background from the moving parts S.

The goal of solving the robust PCA problem is to find the low rank L and the sparse matrix .S. In order
to obtain such matrices, we need to tune the penalty parameter § with iterations. At the beginning, we first
fixed the A = 0.005, and chosen a small number 5 = 0.01. As a result, we observed that the rank of L
was very low at the beginning, starting from 4 even though L has the dimension of 20800 by 200. After
each iteration, we increased the /5 with 1.1 times, and we can observe that the rank of L and the sparsity
(the number of nonzeros) of matrix S increased gradually, and the objective values decreased, as shown in
Table 1. Eventually the errors between L + S and X is pushed to a small number by the large penalty 5 and
the background and foreground are separated as shown in the Figure 3. After 170 iterations, the objective
reached the optimal solution and the rank of L becomes 64. In Figure 4, we selectively showed 3 columns
of the matrix S, L. The columns of matrix .S, as shown in the first 3 images, demonstrated the moving
people and stairs while the last 3 images are the columns of matrix L indicate the background.

Table 1: The variations of L's rank and S’s sparsity and objective values with iterations

Iterations | Rank of L | Sparsity of S | objective
10 4 94685 6.37 x10°
40 10 837234 3.79 x10%
80 54 3698361 8.36 x 107
160 64 4041988 4.08 x107*

Figure 2: The 10 columns of matrix W

8

Objective values

(o]

(o2}

N

— Proximal Gradient Descent
4 Alternating minimization

20 40 60 80
Iterations

Figure 3: The objective values in terms of iterations

Figure 4: The image show of 3 columns of S and L

10

Appendix: Matlab code
PG

function [W,H,Outs | = Proj_grad(X, opts)
%
WITITSTTISSTITSSTIISSTTISSTISSSTIISTTISSTIISSTIISTTISSTISSSTTIISTTIS ST N

%The optimization problem is min {WH} 1/2 || WH — X||"2

% s.t. norm(Wj)<= 1; W \in R+, H \in R+
%parameters

% load (' Swimmer.mat ") ;

% X= reshape (Swimmer,[1024 ,256]) ;

maxit = 1000 ;

[m,n] = size(X); r =17, eta=1;

% normalize and positive projection

nonnega-W = max(rand (m,r) ,0);

WO = nonnega-W./max(nonnega_W 1) ;

HO = max(rand(n,r),0);

if isfield (opts, 'maxit') maxit = opts.maxit; end

if isfield (opts, 'alpha') alpha = opts.alpha; end

if isfield (opts,'r') r = opts.r; end

if isfield (opts, 'W0') WO = opts.WO0; end

if isfield (opts,'HO') HO = opts.HO; end

% initialization

alpha_h = 1/(etaxnorm(W0'xW0));

alpha_w = 1/(etaxnorm(HO'*H0))
W_hat = W0; H_hat = HO:

W=W0; H = HO;

grad_. W = (W_hat+xH _hat'—X)*H_hat;
grad_H = (W_hat+*H _hat' —X)'*W_hat;

’

hist_f = zeros(maxit ,1);
start_time= tic;
k=1;

while (k< maxit+1)

nonnega_ W = max (0, W_hat — alpha_w * grad W);
W = nonnega_W./max(nonnega_-W 1) ;
H = max(0,H_hat — alpha_h % grad_H);
f =1/2 % norm(W«H' — X, ' fro')"2
% save
W_hat =W; H_hat = H; f_hat =f;
hist_f(k) = f ;
% update gradient
alpha_h = 1/(eta*norm(W_hat'*«W_hat));
alpha_w = 1/(etaxnorm(H _hat'«H_hat));
grad.'W = (W_hat*H _hat'—X)*H_hat;
grad_H = (W_hat+*H _hat' —X) '*W_hat;
if mod(k,300)==

fprintf('obj is %.4f\n' f);

)

end

11

k=k+1;
end
R_time = toc(start_time);
Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k;
end

AliMin1

function [W,H,Outs | = Alt_minl_cvx(X, opts)

07
0

TWSTTISSTISSTTISSTISS ST SIS TIISSTISS ST IS STTIS ST IS S ST IS SIS ST IS S ST IS STIYS S o

%The optimization problem is min_{WH} 1/2 || WH — X||"2

% s.t. norm(Wj)<= 1; W \in R+, H \in R+
% clc; clear ; close all;

% load (' Swimmer.mat ") ;

% X= reshape (Swimmer,[1024 ,256]) ;

%parameters

maxit = 100 ; r =17;

[m,n]=size (X);

WO0= rand (m, r);HO=rand (n,r);

if isfield (opts, 'maxit') maxit = opts.maxit; end

if isfield (opts,'r') r = opts.r; end

if isfield (opts, 'W0') WO = opts.WO0; end

if isfield (opts,'HO') HO = opts.HO; end
(

if isfield (opts, 'tol') tol = opts.tol; end
% initialization

WeW0; H = HO;

hist_f = [];
strat_time = tic;
for k = 1: maxit

cvx_begin quiet
if mod(k,2)==0
variable W(m,r);
nonnega_W = max(W,0) ;
W = nonnega-W./max(nonnega-W 1) ;

else
variable H(n,r);
H>= 0;
end
minimize (norm (WxH' — X, ' fro ")) ;
cvx_end
f = 0.5%xcvx_optval*cvx_optval;

if “isnan(cvx_optval)
hist_f=[hist_f f];
end
if mod(k,2)==0
fprintf('Iteration %d, obj is %.4f\n' k,f);

12

end
end
R_time = toc(strat_time);
Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k;
end

APG

function [W,H,Outs | = apg(X, opts)
%
0
TSI TTSSSTTTTSS TSI ST TSI ST ST IS S TSI S TSI ST SIS ST TSSSS TSI ST SIS SIS

%The optimization problem is min_{WH} 1/2 || WH — X||"2
% s.t. norm(Wj)<= 1; W \in R+, H \in R+
Y%parameters

% load (' Swimmer.mat ") ;

% X= reshape (Swimmer,[1024 ,256]) ;

maxit = 1000 ; eta=1;

[m,n] = size(X); r =17,

% normalize and positive projection

nonnega-W = max(rand (m,r) ,0);

W0 = nonnega_W./max(nonnega W ,1) ;

HO = max(rand(n,r),0);

if isfield (opts, 'maxit') maxit = opts.maxit; end
if isfield (opts,'alpha') alpha = opts.alpha; end
if isfield(opts,'r') r = opts.r; end

if isfield (opts, 'W0') WO = opts.WO0; end

if isfield (opts,'HO') HO = opts.HO; end

% initialization

alpha.w = 1/(etaxnorm (HO'«HO)) ;
W hat = WO: H_hat — HO:

W=W0; H = HO;

grad_. W = (W_hat+xH _hat'—X)*H_hat;

hist_f = zeros(maxit ,1);
start_time= tic;
k=1;

while (k< maxit+1)
nonnega_ W = max (0, W_hat — alpha_w * grad W);
W = nonnega W ./max(nonnega_ W, 1) ;
grad_.H = (W *H_hat' —X) 'sW ;
alpha_h = 1/(eta*norm (W'sW));
H = max(0,H_hat — alpha_h % grad_H);
f =1/2 * norm(WxH' — X, "fro')"2 ;
% save
W hat = W; H hat — H; f hat —f;
hist_f(k) = f ;

% update gradient

alpha_w = 1/(etaxnorm(H _hat'«H_hat));

13

grad W = (W_hat+*H _hat'—X)*H _hat;
if mod(k,300)==
fprintf('obj is %.4f\n' f);

end
k=k+1;
end
R_time = toc(start_time);
Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k;
end
PGD

function [L,S,Outs | = q2_pgd2 (X, opts)

WSSTTTTISSTTTIIIISe Robust PCA
WITTITSTTTIISTTIISSTTIISSTTISSSTITISSITISSITII o

%The optimization problem is min_{L,S} || L ||_-x + lambda || S ||_-1 +
beta/2 || L4+S — X||"2

maxit = 100 ; alpha = 0.5;

[m,n] = size (X);

lambda = 1/sqrt (m);beta=1/norm(X); beta_max = le5;

LO0= zeros(m,n);S0=zeros (m,n);

if isfield (opts, 'maxit') maxit = opts.maxit; end

if isfield (opts, 'alpha') alpha = opts.alpha; end

if isfield (opts,'beta') beta = opts.beta; end

if isfield (opts,'beta_max') beta_max = opts.beta_max; end
if isfield (opts, 'lambda') lambda = opts.lambda; end

if isfield (opts,'LO") LO = opts.L0; end

if isfield (opts,'S0") SO = opts.S0; end

% initialization
L_hat = LO; S_hat = SO;
[=L0; S = SO;
grad = (L_hat+S_hat—X);
% f_hat = 0.5% norm(L+S—X, 'fro') 2 ;
hist_f = zeros(maxit,1);
start_time = tic;
for k =1:maxit
Y = L_hat — alphaxgrad;
Z = S_hat — alphaxgrad ;
[U,D,V] = svd(Y, 'econ');
S = sign(Z).* max(abs(Z)—alphaxlambda/beta ,0);
L = U x diag(max(diag(D)—alpha /beta ,0))*V';
f = 0.5% norm(L+S—X, 'fro')"2 ;
% back tracking to update the alpha trace(grad'x(L—L_hat)) +trace(
grad '#(S—S_hat)) +
% while alpha > min_alpha && f>f_hat — 2xalpha * norm(grad, ' fro')" 2/
norm (grad)% +1/(2xalpha)*(norm(L=Y, "' fro ')"2 + norm(S-Z, "' fro ') 2)
% alpha = max(eta * alpha, min_alpha)
% Y = L_hat — alphaxgrad;

14

% Z = S_hat — alphaxgrad
% [U,D,V] = svd(Y, 'econ');
% S = blgn(Z) * max(abs(Z)—alphaxlambda/beta ,0);
% L = U % diag(max(diag(D)—alpha/beta ,0))*V";
% f = 0.5% norm(I+S-X, 'fro')"2 ;
%o end
hist_f (k)= f +lambda * norm(S,1)/betat+ trace(sqrt(L'*L))/beta
L_hat = L; S_hat = S; %f_hat =f;
% update gradient
grad = (L_hat+S_hat—X);
rankL, = sum(diag(D)>alpha/beta);
cardS = sum(sum(double(abs(S)>0)));
if mod(k,10)==
fprintf('obj is %.6e\n', hist_f(k));
fprintf('The rank of L is %d \n', rankL);
fprintf('The ||S||_0 is %d\n', cardS);
end
beta = min(beta * 1.1, beta_max);

)

?

end

R_time = toc(start_time);

Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k; Outs.alpha = alpha;

end

AltMin2

% function [W,H,Outs | = Alt_min2 (X, opts)
TWSTTISTTISSTTISSTIIS ST IS STTISSTISS ST SIS TIIS ST IS ST SIS TS ST IS ST IS TN

%The optimization problem is min_{L,S} || L ||_-x + \lambda ||S||_-1 + %
beta/2 ||L4+SX]]|"
Y%parameters
[m,n] = size (X);
% initialization
LO0= zeros(m,n); SO=zeros(m,n);
[=L0; S = SO;
L_hat = LO; S_hat = SO;

opts.maxit = 200; opts.alpha =0.5;

opts.lambda = 0.005; opts.beta =0.01 ; opts.beta_max =leb;
if isfield (opts, 'maxit') maxit = opts.maxit; end

if isfield (opts, 'lambda') lambda = opts.lambda; end
if isfield (opts,'beta') beta = opts.beta; end

if isfield (opts,'r') r = opts.r; end

if isfield (opts, 'W0') WO = opts.WO0; end

if isfield (opts,'HO') HO = opts.HO; end

if isfield (opts, 'tol') tol = opts.tol; end

% initialization

hist_f = zeros(opts.maxit, 1) ;

15

T

strat_time = tic;
for k=1:opts.maxit
[S,0utS] = S_updatel (X,L_hat,S_hat ,opts);
[L ,0utlL | = L_updatel(X,L_hat,S,opts);
L_hat =L; S_hat =S;
hist_f(k) = 0.5%xnorm(L+S—-X, 'fro')"2 4opts.lambda *
norm(S,1)/opts.beta+ trace(sqrt(L'sL))/opts.beta
if mod(k,20)==
fprintf('obj is %.4f\n' hist_f(k));

end
opts.beta = opts.betax1.1;
end
R_time = toc(strat_time);
Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k;

end
function [S,Outs | = S_updatel (X,L,S ,opts)
maxit = 100

’

[m,n] = size (X); tol=le—6;

lambda = 0.005;beta=1000;

if isfield (opts, 'maxit') maxit = opts.maxit; end
if isfield (opts,'beta') beta = opts.beta; end

if isfield (opts,'ecta') eta = opts.eta; end

if isfield (opts, 'alpha') alpha = opts.alpha; end
if isfield (opts, 'lambda') lambda = opts.lambda; end
if isfield (opts,'tol') tol = opts.tol; end

% initialization

S_hat = S;

L hat = L:

grad = (L +S_hat—X);
% grad = (L +S5 —X);

f_hat = 0.5 % norm (I4S—X, 'fro')"2 ;%tlambda * norm(S,1)
f_gap =Inf;

hist_f = zeros(maxit,1);

start_time = tic;

k=1;

while (k < maxit) && (f_gap > tol)
Z = S_hat — alphaxgrad ;
S = sign(Z).* max(abs(Z)—alphaxlambda/beta ,0);
f = 0.5% norm(L+S—X, 'fro')"2 ;
hist_f (k)= f + +lambda * norm(S,1)/beta ;
it k> 1
f_gap = abs(hist_f(k)-hist_f(k—1));
end
S_hat = S; f_hat = f;
grad = (L +S_hat—X);
if mod(k,5)==0
fprintf('Iteration %d of updating S, the objective is %.6f \n'
k,hist_f(k));
end

16

I

k=k+1;

end
fprintf ('S updates %d times \n', k);
R_time = toc(start_time);

Outs.t = R_time; Outs. hist_f = hist _f;
Outs.k = k;

end

function [L,Outs] = L_updatel (X,L,S,opts)

maxit = 100 ; tol=le—6;

[m,n] = size (X); beta=1000;

if isfield (opts, 'maxit') maxit = opts.maxit; end

if isfield (opts,'beta') beta = opts.beta; end
if isfield (opts,'eta') eta = opts.eta; end
if isfield (opts,'alpha') alpha = opts.alpha; end
if isfield (opts,'tol') tol = opts.tol; end

% initialization

L_hat = L ; S_hat =S;

grad = (L_hat+S —X);

f_gap=Inf;

hist_f = zeros(maxit,1);
start_time = tic;

k=1;

while k<(maxit) && (f_gap > tol)
Y = L_hat — alphaxgrad;
[U,D,V] = svd(Y, 'econ');
L = U x diag(max(diag(D)—alpha /beta ,0))*V';
f = 0.5% norm(L+S—-X, 'fro')"2 ;
hist_f (k)=f+ trace(sqrt(L'+L))/beta

Y

if k>1

f_gap = abs(hist_f(k)—hist_f(k—1));
end

L_hat = L;

grad = (L_hat4+S —X);

if mod(k,5)==0

k,hist_f(k));
end
k=k+1;
end
fprintf ('L updates %d times \n', k);
R_time = toc(start_time);
Outs.t = R_time; Outs. hist_f = hist_f;
Outs.k = k;

end

fprintf('Iteration %d of updating L, the objective is %.6f \n',

17

