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Abstract—This paper proposes a data-driven fast event iden-
tification method based on the measurements of Phasor Mea-
surement Units (PMUs). The central idea is to characterize an
event by the low-dimensional subspace spanned by the dominant
singular vectors of a data matrix that contains spatial-temporal
blocks of PMU data. A dictionary of subspaces that correspond
to different events are established off-line, and an event is
identified online with the most similar subspace in the dictionary.
Both theoretical and numerical analysis demonstrate that the
subspace of PMU data is characteristic of system events and is
robust to system initial conditions. This compact representation
reduces the dictionary size and the computational time of the
event identification method. The proposed method is evaluated
numerically on simulated events in an IEEE 68-bus power
systems.

Index Terms—disturbance identification, synchrophasor mea-
surements, low rank matrices.

I. INTRODUCTION

Power system faults and events happen irregularly and
potentially lead to wide-area oscillations and even cascading
failures. The Northeast blackout of 2003 in the U.S. started
with a local fault but escalated to a widespread blackout
partially because the operator was not aware of the fault
and took no action at the early stage. Therefore, fast event
detection, identification, and location are of critical importance
in the wide-area situational awareness of power systems.

Quite a few methods have been developed to locate events
such as generator trips [1], line outages [2], [3], and oscil-
lations [4]-[6]. Model-based identification methods (see e.g.,
[2], [3], [7]) usually require the modeling of the power system,
and the identification performance depends critically on the
accuracy of estimated parameters. Data-driven methods (e.g.,
[8], [9]) analyze the measurements directly without power
system models. These methods extract features (including
direct features like a frequency [10] or its derivative [11], as
well as indirect features like wavelet coefficients [12]) from
various datasets and classify those with similar features as
cases resulting from the same event type.

Data-driven methods are receiving increasing attentions due
to the recent wealth of data provided by modern devices such
as Phasor Measurement Units [13], which measure voltage and
current phasors directly at a rate of thirty samples per second
or above. The computational complexity of a data-driven
method generally increases significantly with the dataset size.
That limits its practical applications in large-scale power

systems with an increasing denser coverage of PMUs. Thus,
it is important to develop a compact representation of data
features to keep the computation tractable.

This paper proposes a novel data-driven method to identify
and locate events without modeling the power system. The
critical innovation is to characterize an event with a compact
representation of system dynamics, computed from the spatial
temporal blocks of measurements collected by multiple PMUs.
Specifically, we demonstrate that the system dynamics can be
characterized by a low-dimensional row subspace spanned by
the dominant singular vectors of the PMU data matrix. This
subspace characterization is robust to system initial conditions.
Then event identification can be achieved by comparing ob-
tained data with a pre-computed event dictionary with each
dictionary atom corresponding to a row subspace of an event.

This proposed method has the following distinctive features:
(1). The low-dimensional subspace can be easily computed
through Singular Value Decomposition (SVD) or its faster
variants like [14]. No modeling or parameter estimation is
required. (2). The dictionary size is much smaller compared
with a dictionary built directly from time series measurements,
due to the dimensionality reduction in subspace character-
ization and the robustness of subspaces to system initial
conditions. That in turn reduces the computational complexity
of both the offline dictionary construction and the online event
identification. (3). The method can identify events shortly
after the event starts (e.g., within one second) and can be
implemented in real-time, while existing methods are mostly
designed for past event analysis.

The rest of the paper is organized as follows. The moti-
vation of subspaces representation is described in Section II.
The event identification method is introduced in Section III.
Section IV records the numerical experiments in the IEEE 68-
bus test system. Section V concludes the paper.

II. TECHNICAL MOTIVATION

A. Low-rank Property of PMU Data Matrices

If PMU measurements at multiple buses across time are
collected into an m x T’ matrix, where m is the number of
measurements at one time instant, and 7' is the number of
time steps, then the matrix can be approximated by a low-rank
matrix with rank r much less than m and T'. This approximate
low-rank property of PMU data matrices have been observed



[15]-[17] and exploited to recover missing PMU data [16],
detect system events [16], and identify cyber data attacks [18].

Let matrix M, denote the rank-r approximation to the data
matrix, and let M, = UTETVTT denote its r non-zero singular
value decomposition, where X.,. € C"*" contains the singular
values as its diagonal entries, and U,.,V,. € C"™*" contain r
left and right singular vectors, respectively. V.| denotes the
conjugate transpose of V... U,’s characterize the correlations
of measurements in different PMUs. V,’s characterize the
dominating dynamics in the power system during an event.
Columns of V,. form a unitary basis of the row subspace of
M,.. This paper proposes to represent an event by the row
subspace of M,., represented by V..

B. Event Characterization through Row Subspaces of Data
Matrices

We first use a simplified model to motivate the low rankness
of data matrices and the subspace characterization. If the
power system is linearized around one equilibrium point, the
resulting discrete-time model is

x(t +1) = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t) + €(t), 2)

where vectors x(t) € C™ and y(t) € C™ represent devia-
tions at time ¢ in state variables and measurements from the
equilibrium point. u(t) is the control input, and €(t) is noise.

Let Ak, lg, and ry denote the kth largest eigenvalue of A
and the corresponding left and right eigenvectors. Suppose
the system matrix A is approximately low-rank, i.e., |Aq41]
is very close to zero for some r much less than n. Assume
that the control input u(t) and measurement noise €(t) are
zero. Let xg denote the system state after an event starts.
The measurements from time 1 to 7" are collected into matrix
M =[y(1),y(2),---,y(T)]. One can verify that M can be
approximated by a rank-r matrix, i.e.,

M ~ Z l,txo STk - ,811, 3)
k=1
where
L =LA AR A )

Moreover, the row subspace of M is spanned by By’s, and
independent of the system initial condition xq. The row space
is shift-invariant when the measurement window is shifted. The
row subspace of M,, = [y(1+ k),y(2 + k), - ,y(T + k)]
is also spanned by 3’ for any positive integer .

We emphasize that although the motivating analysis is
based on a simplified model and does not consider noise,
the low-rank property exists for complex power systems. For
instance, even when A is not low-rank for a large-scale power
system, its reduce model under one event may have a low-
rank system matrix. Moreover, we observe numerically that
the row subspace is indeed robust to system initial conditions
and shift-invariant to a certain degree (see Section IV-A for
details). Therefore, the row subspace of a data matrix is a
compact and robust representation of system dynamics.

The proposed event identification method here is to build
a dictionary of events off-line based on historical data and
then identify an event online by comparing the obtained
measurements with the dictionary. The key innovation here is
to characterize an event by a low-dimensional row subspace
of a spatial-temporal PMU data matrix. Compared with the
dictionary composed of time series of PMU measurements
(e.g., [9], [19]), using row subspace as dictionary atoms
can significantly reduce the dictionary size without scarifying
the identification accuracy. Moreover, the subspaces can be
obtained easily through SVD or its fast variants like [14].

III. ONLINE EVENT IDENTIFICATION

This paper focuses on subspace-based event identification,
while the proposed method includes event detection, identifica-
tion, and location for a practical implementation. The method
is outlined in Fig. 1. A dictionary of events are constructed
offline from sample PMU historical datasets during a window
size T'. Once an event is detected (through either the detection
method here or any other event detector), all the PMU data
in the next 7' time steps are collected to estimate the row
subspace and column subspace. The event is identified through
comparing the row subspace with the dictionary computed
offline and located by comparing the significance of changes
at different locations.
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Fig. 1: The flow diagram of the online detection, identification and
location method

The event identification requires subspace estimation and
comparison, summarized as follows. Let o; denote its ith
largest singular value of matrix M € C™*T. Given a pre-
determined 7 € (0, 1), 7 is the smallest integer such that

(Xioi00)/(Bfy04) > 7 %)

holds. The approximate rank 7 is defined as
g

(6)

T = arg max .
1<i<7 0441



7 in (5) controls the approximation ratio, and only dominating
features are maintained in the approximation through (6). The
rank-r approximation is M, = U,.E,J/,T. Columns in V. form
a basis of the r-dimensional subspace in CT.

One can measure the affinity of two subspaces in CT
through the average subspace angle [20]. Specifically, the
angle between subspaces spanned by unitary bases V; and V},
respectively can be computed as

O(Vi, Vi) = axccos(y/ [V Vill3/ mindk, 1)) (7)

0 equals 90° if two subspaces are orthogonal to other. 6 equals
0° if two subspaces are the same (I = k) or one is embedded
in the other (I # k). Thus, a smaller 0 indicates higher affinity
of two subspaces.

The proposed method includes the following components.
1. Offline construction of an event dictionary

The dictionary is constructed from historical event datasets,
as shown in Fig. 2. Given each dataset, we compute a row
subspace from PMU data within a window size T (e.g.
thirty samples for one second of PMU data) and a given
approximation ratio 7. These row subspaces are candidate
dictionary atoms. Since a row subspace is robust to system
initial conditions as described in Section II-B, row subspaces
computed from events with the same type, at nearly location
may have a small subspace angle. This property is exploited
to reduce the dictionary size.

We refine the dictionary as follows. After selecting a
subspace as an atom, all subspaces with angles less than a
predefined threshold ) are removed from the dictionary. Let
V7 denote the ith dictionary atom that corresponds to event
type j. The total number of atoms in a dictionary is X7_;n; for
q types of events like line trip, load change, and three-phase
short circuit events.
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Fig. 2: Dictionary construction from historical datasets

2. Online event detection

We detect an event when the column subspace changes,
similar to [16]. At time step ¢, the obtained measurement
vector y(t) is projected onto the current estimate of the column
subspace, represented by a basis U,. If the projection error,
defined as ¢ = |ly, — U,Uly(t)|2, exceeds a predetermined
threshold, then y(t) does not belong to the span of U,, and
an event is declared to have happened. The column subspace
can be estimated by SVD of past data in a fixed window or

computed by subspace tracking methods like SPIRIT [21]. The
event detection functionality is independent of others and can
be achieved with other event detectors.

3. Online event identification based on the row subspace

Once an event is detected, all the PMU data in 7" time steps
after an event happens are collected into a matrix. Given T,
we determine the approximate rank r and compute the row
subspace spanned by V. Define the minimum subspace angle
0* with the dictionary as

0" ml{l mln G(V Vi), (8)
j=1 i=1
If the minimum is achieved with some dictionary atom VitiT,
the event is identified to be type i*.

4. Online event location

Here we use bus voltage magnitude measurements for event
location. Given the rank r-approximation M, = UTETVTT of
a data matrix, the ith row of U.Y,, denoted by (U,%,);.,
contains coordinates of (M,);., which contains voltage mag-
nitudes of bus ¢ across time, with respect to the basis V,.. Then
1O lla = (M) ]l

With the intuition that the bus closest to the origination of
the event might have the largest value of ||(M,.);.||2, we sort
the buses in a descending order of ||(U,.X,);.||2 and locate the
event by indicating that the event could happen at any of the
top k buses with a predetermined integer k.

IV. NUMERICAL RESULTS

The method is tested on an IEEE 16-generator 68-bus
test system as shown in Fig. 3. We generate synthetic PMU
measurements by Power System Toolbox (PST) [22] for
dictionary construction and method validation. Three types of
events are considered: load change (the load changes from
0.5 p.u. to 1.5 p.u.), line trip and three phase short circuit
(cleared after 0.2 second) events. The data rate is set to be
30 samples per second. Voltage magnitudes measurements are
reported here, while we obtained similar results for phasor
angle measurements. One second of data after an event starts
are selected for analysis, i.e., T' = 30.

Event datasets are generated with different pre-event system
conditions. The difference between pre-event conditions are
measured by the average relative difference of active power
flow over all lines, denoted by 7. Specifically,

b L
M = (35
where P} and le; are active power injections in the line j

under condition a and b, respectively. L is the total number of
lines.

1|P]l')7qu|/‘ijD/Lv 9

A. Robustness of subspaces to pre-event systems conditions

We first verify that the row subspace is robust to pre-event
system conditions. Fig. 4 shows the voltage magnitudes of
four buses when the line connecting bus 1 and bus 2 is
tripped under two different system conditions a and b. The



Fig. 3: Single line diagram of an IEEE 16-machine 68 bus power
system. Five areas are decided based on the coherency of generators.

average relative difference of two conditions is 72 = 93.45%.
Although these two datasets correspond to the same event at
the same location, the differences in pre-event conditions lead
to different time series measurements. Directly comparing the
time series measurements may miss the similarities.

We pick one second of data in both datasets starting from
t; = 0.55 second. With 7 = 0.99, the approximate rank
defined in (5)-(6) is 6 for both data matrices. Fig. 5 shows the
corresponding six principal right singular vectors, which form
a basis of the row subspace. Note that the same subspace can
be represented by infinitely possible basis selections. The angle
of these two subspaces (defined in (7)) is 1.13°, indicating that
these two subspaces are very close to each other. Thus, the row
subspace is indeed robust to pre-event conditions.
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Fig. 4: The voltage magnitude of bus 1,25,40,48 when line 1-2 is
tripped under pre-event condition a (left) ; under pre-event condition
b with n8 = 93.45% (right)
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Fig. 5: The six principal singular vectors of V. when line 1-2 was
tripped under pre-event condition a (left); under pre-event condition
b with n8 = 93.45% (right)

We then verify the shift-invariance property of the row
subspace. We fix the one-second of data under condition a
and its rank-6 approximation as before, while shifting the

Table I: The subspace angles between two datasets in Fig. 4 when
two observation windows are separated by k

0.03
0.29

0.15 | 03 0.6 0.9 1.5
1.62 | 1.31 | 0.87 | 1.05 | 0.29

+ (second)
Subspace angle (°)

observation window in the other dataset to start from ¢; + k.
We set 7 to be 0.95 when approximating the data matrix under
condition b to maintain dominating features. As shown in Ta-
ble I, even though the observation window in two datasets are
not synchronized, the subspace angle is still relatively small.
Therefore, minor differences in the observation windows do
not affect the subspace comparison.

B. Dictionary construction

We simulate 190 cases, including 80 line trip events, 50
load change events, and 60 short circuit events at different
locations with the same pre-event system condition a. A event
dictionary is constructed following Step 1 in Section III. We
set 7 = 0.99, ¢ = 5°. After the refinement, the dictionary has
33 atoms, listed in Table II. Line trip 1-2 indicates tripping the
line between bus 1 and 2. Load change (or short circuit) 32
means a load change (or short circuit) event at bus 32. Each
atom corresponds to a row-subspace, represented by a 30 x r
matrix V' (r is usually 3 ~ 6 here).

Table 11: The labels of different types of dictionary atoms

Dictionary Types
Line Trip

The Label of Dictionary Atoms
1-2, 4-14, 5-8, 12-11, 15-16, 30-2,
32-33, 33-34, 35-45, 36-37, 42-41, 44-45
15, 16, 24, 32, 41, 42, 47, 48
4,12, 24, 29, 53, 59, 61, 63, 66, 28, 32, 50, 65

Load Change
Short Circuit

C. Event identification and location

Another 380 cases under two different pre-event conditions
b and c are generated to test the identification performance.
m = 93.4%, and 7¢ = 48.7%. Under each pre-event
condition, 80 line trip events, 50 load change events (the load
changes from 0.5 p.u. to 1.5 p.u.), and 60 three phase short
circuits! events at different locations are generated. 7 = 0.99.

Table I11: Minimum subspace angles between a test case with a pre-
event condition ¢ and dictionary atoms with the same event type with
pre-event condition a. Tj; = 48.7%.

DT

E - Load Change | Line Trip | Short Circuit
vents

ILoad Change 1 1.03 10.63 18.50
ILoad Change 7 1.77 10.94 20.55
ILine Trip 1-30 11.80 0.67 14.32
ILine Trip 16-19 10.21 1.39 13.24
Short Circuit 5 21.18 11.75 1.97
Short Circuit 15 22.80 18.32 5.46

Table III records the identification results of six sample
cases under condition c. The subspace angle between each
test case and each dictionary atom is computed. The minimum

IThe one-second observation window includes the short circuit event before
and after the clearance. Since the system topology changes after clearing
the fault, the corresponding system model changes. Thus, the clearance time
should be aligned when comparing two short circuit datasets.



subspace angle between a test case and dictionary atoms with
the same event type are listed in Table III. As highlighted
in bold, the minimum subspace angle is achieved when a
dictionary atom has the same event type with the test case.
Moreover, the subspace angle between a test case with dictio-
nary atoms corresponding to different event types are generally
much larger. Thus, the events can be correctly identified.
Table IV records the identification and location results under
three criteria:
Identification Accuracy Rate (IAR): The ratio of the number
of accurately identified events to the total number of events;
Approximate Location Accuracy Rate (ALAR): the ratio
the number of events with actual locations?> among the top k
buses selected by Step 4 to the total number of events.
Exact Location Accuracy Rate (ELAR): a special case of
ALAR when k£ =1, i.e., the event location is exact.

Table 1V: Statistical results of 380 cases with pre-event conditions b
and ¢ with i, = 93.4% or 7S = 48.7% respectively

Type of event | IAR % [ ELAR % ALAR %

Line Trip 100 85 94(among 3 buses)
Short Circuit 100 77 90 (among top 3 buses)
Load Change 100 46 90 (among top 5 buses)

All the event types of 380 cases are correctly identified. The
exact location can be identified with 85% and 77% accuracy
for serious events like line trips and short circuit events.
The exact location rate is smaller for minor events like load
changes. The location rates all increase to 90% to 95% if we
allow locating the events among 3-5 buses.

V. CONCLUSION AND FUTURE WORK

This paper develops a data-driven event identification
method by comparing the measurements with a dictionary of
events constructed offline. It proposes to characterize system
dynamics by the row subspace of a spatial-temporal PMU
data matrix without estimating the power system model.
This compact representation reduces the dictionary size while
maintaining the identification accuracy. The method is verified
on simulated datasets in an IEEE 68-bus test system. We are
currently testing this method on historical disturbance data
provided by ISO-NE. The results are not included here due to
the page limit. The other ongoing work is to identify events
outside a control region based on its local measurements.
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2The location of line trip events are considered as successful if one of the
two related buses are correctly identified.
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